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Abstract—We propose an end-to-end text-to-speech (TTS)
method that can intuitively correct accent errors in synthetic
speech by using feedback from humans. State-of-the-art end-
to-end TTS methods can synthesize high-quality speech, but
humans can hardly interpret the black-boxed TTS system
represented as a stack of neural networks. This reduced inter-
pretability prevents humans from controlling the TTS system to
correct errors in synthetic speech intuitively. In this paper, we
focus on a method to involve human listeners in the process of
accent error correction for synthetic speech generated by end-
to-end TTS. Specifically, we build an end-to-end TTS model
equipping a prosody predictor that estimates the change of
pitch for each syllable from phoneme embeddings and context-
aware word embedding. Then, we perform a human-in-the-loop
(HITL) framework to correct errors of the prosody predictor
using collective intelligence of human listeners. The results of
Japanese TTS experiments show that our HITL framework can
successfully correct accent errors and contribute to the quality
of synthetic speech comparable to the conventional method
requiring an accent dictionary for text analysis.

I. INTRODUCTION

Text-to-speech (TTS) [1] is a technology that uses text as
input to synthesize the corresponding intelligible and natural
speech. End-to-end TTS [2] is a method for synthesizing a
speech waveform by feeding text into a single deep neural net-
work (DNN)-based TTS model instead of pipelined process
utilized in statistical parametric speech synthesis (SPSS) [3].
Since expertise in TTS is no longer necessarily required, end-
to-end TTS enables the users to synthesize naturally-sounding
speech close to human speech [4]. However, the end-to-end
TTS users often suffer from the low interpretability of the
entire TTS model represented by a stack of DNNs when
they correct errors of synthetic speech to obtain their desired
outcomes. One primal error is an accent error of synthetic
speech, which can degrade the quality of synthetic speech
and can even impede accurate communication. Therefore, a
framework is needed to enable users of TTS, including non-
experts, to correct errors. In this paper, we focus on accent
errors of synthetic speech generated by end-to-end TTS and
investigate a method to involve human listeners in the error
correction process.

One approach for improving the controllability of speech
synthesized by end-to-end TTS is to estimate prosodic in-
formation of the speech from the input text and condition
the TTS model by the information explicitly. Such prosodic

information should be interpretable for users to intuitively
correct errors in synthetic speech. For instance, Kurihara et
al.’s method [5] inserts symbols for the prosody control of
synthetic speech into the input phoneme sequence. However,
some of the symbols are complicated for non-expert users
who want to correct accent errors. In addition, if the text
analysis result is incorrect, the user, who may not be an expert,
needs to update the dictionary used for the analysis to ensure
that the error does not happen again. In summary, although
this conventional method can provide an intuitive way to
control the prosody of synthetic speech, its adaptability, i.e.,
the ability to make the error correction easy, has not yet been
examined. The improvement of adaptability will cultivate
an advanced society where humans and computers can use
speech as a natural means of communication with each other.

In this paper, we propose an end-to-end TTS method
that can easily correct accent errors in synthetic speech by
using feedback from humans. First, we build an end-to-
end TTS model equipping a DNN-based prosody predictor
that estimates the change of pitch for each syllable (raising,
lowering, or keeping unchanged) from phoneme embeddings
and context-aware word embeddings. The simplification of
symbols proposed by Kurihara et al. makes the error correc-
tion more intuitive for non-expert users because they only
have to modify the prosody predictor output for each syllable
from one of the three options to control the prosody of
synthetic speech. Then, we perfrorm a human-in-the-loop
(HITL) framework involving human listeners to collect accent
annotations of synthetic speech and to tell a trained end-to-
end TTS model how it can improve the prosody prediction
performance. The results of Japanese TTS experiments show
that our HITL framework can successfully correct accent
errors and achieve the quality of synthetic speech comparable
to the conventional method requiring an accent dictionary for
text analysis.

II. RELATED WORK

The prediction of natural prosody is an essential and
challenging task in end-to-end TTS [2] because a single DNN
must learn the one-to-many mapping from phoneme/character
sequence to multiple voices caused by variation in non-/para-
linguistic information. If the predicted prosody is incorrect,
it can degrade the quality of synthetic speech and cause



miscommunication, especially in TTS for a tonal language
such as Japanese and Chinese. For instance, “箸” (chopsticks),
“橋” (bridge), and “端” (edge) are all pronounced as “hashi”
in Japanese, but all with different accents to distinguish their
meanings. In this section, we briefly review conventional
studies related to modeling and controlling prosody for end-
to-end TTS.

One straightforward approach for improving the prosody
prediction performance of end-to-end TTS is to introduce
techniques and features used in traditional SPSS methods [3].
For example, Okamoto et al. [6] used a full-context label
including rich linguistic features derived from text analysis
(e.g., part of speech and accent type) as the input of end-
to-end TTS. Ren et al. [7] proposed FastSpeech 2, a non-
autoregressive end-to-end TTS model that incorporates the
predictions of phoneme durations and acoustic features (F0
and energy) into the process of mel-spectrogram genera-
tion from a phoneme sequence. Our work follows these
approaches partially but aims to improve the interpretability
of linguistic features to control synthetic speech because non-
expert users can hardly understand the role of each feature
correctly.

Several studies on end-to-end TTS have aimed to im-
prove the controllability of synthetic speech, another vital
factor in some applications using TTS technology as the
primary means of communication, such as spoken dialogue
systems [8] and speaking aids [9]. Some presented ma-
chine learning frameworks to learn discrete representations
for prosody control in an unsupervised manner using deep
generative models [10] (e.g., variational autoencoders [11]).
Others designed more interpretable features for the input of
end-to-end TTS, such as phonetic and prosodic (PP) labels [5]
and intuitive prosodic features [12]. The PP labels deeply
inspire our proposed method because they can provide an
intuitive way to control the prosody of synthetic speech
through a series of symbols: “ˆ” (initial raising), “!” (accent
nucleus), “#” (accentual phrase boundary), “(” (declarative
end-of-sentence), “?” (interrogative end-of-sentence), and “ ”
(pause). However, some symbols require the user’s knowledge
of speech and linguistics to understand correctly, which
makes the error correction of prosody difficult and reduces
adaptability of synthetic speech.

III. PROPOSED METHOD

We propose a method to improve both controllability and
adaptability of end-to-end TTS. In this paper, we describe our
system designed for the Japanese language. Fig. 1 shows an
overview of the proposed method.

A. Baseline TTS model

We use FastSpeech 2 [7] as the baseline TTS model of our
proposed method because we place importance on the speed
of learning and inference as well as the stability. The original
FastSpeech 2 consists of some modules for generating a mel-
spectrogram of speech from a phoneme sequence:
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decoder

Input text(e.g., 東京大学)
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Fig. 1. Overview of proposed method. The prosody predictor predicts
the prosody symbol from phoneme embeddings and context-aware word
embeddings derived from BERT.

1) Text analysis for converting the input raw text into
phoneme sequences.

2) Phoneme embedding to obtain an embedding vector of
phoneme identities.

3) Encoder for producing a hidden phoneme sequence
from the embedding vector.

4) Variance adaptor for prediction of variance information
of speech, such as duration, pitch, and energy, from the
hidden sequence and adding the information to it.

5) Mel-spectrogram decoder for predicting mel-
spectrogram from the variance adaptor outputs.

B. Prosody predictor

For improving the adaptability of synthetic speech, we
introduce a prosody predictor, a DNN that estimates the pitch
change for each syllable, into the original FastSpeech 2. The
DNN architecture is almost the same as each variance adaptor
in the original FastSpeech 2. Specifically, it has a 2-layer
1D convolutional network with ReLU activation [13], each
followed by a layer normalization [14], a dropout [15] layer,
and a linear layer for projecting the hidden states onto the
output sequence.

1) Inputs—Phoneme and context-aware word embeddings:
In addition to phoneme embeddings, we use word embeddings
derived from BERT [16] as input to the prosody predictor
for considering the contextual information of input text. The
process from input raw text to the prosody predictor is as
follows. First, BERT and its tokenizer are used to segment
the text by word to obtain a word embedding for each word.
In this process, word embedding is obtained by taking the
average of multiple embeddings of subwords that constitute
the word. Then, each word embedding is duplicated as many
times as the number of phonemes in the word to align
the different time resolutions of phoneme/word embeddings.
Finally, these embeddings are summed and used as input to
the prosody predictor.

2) Outputs—Interpretable prosody symbols: We define the
output of the prosody predictor as a simplified version of the
PP labels used in Kurihara et al.’s method: 1) “[” (raising the



TABLE I
DEFINITIONS OF PROSODY SYMBOLS.

Symbol Definition Prosody predictor
output

［ Raising the pitch +1
］ Lowering the pitch −1

Keeping the accent unchanged 0

Ⅲ - Correct accents

FB
in Fig. 1

(Japanese text for accent annotation)

Fig. 2. Interface and overview of accent error correction feedback.

pitch), 2) “]” (lowering the pitch), and 3) “ ” (keeping the
accent unchanged). The simplification is based on the fact that
each syllable (i.e., mora) in a Japanese text has a high/low
accent pattern and is expected to provide an accessible way
for users to manipulate the prosody of synthetic speech.

3) Loss function: We use the mean squared error (MSE)
between predicted and ground-truth prosody symbols for the
prosody predictor training. The ground-truth prosody symbols
can be obtained in various ways: 1) results of the same text
analysis as in Kurihara et al.’s method, 2) unsupervisedly
learned latent variables of prosody (e.g., Yufune et al.’s
method [10]), and 3) accent correction feedback from humans
(explained later in Section III-C). We use the first way in this
paper for simplicity. However, we can also use the second or
third in situations where the accent dictionary is unavailable to
obtain the ground-truth symbols, such as dialect TTS [17]. In
the computation of the loss function, we convert each prosody
symbol into a scalar value as shown in Table I to enable
the loss computation as MSE. Since all components in the
prosody predictor are described by DNNs, we can perform
the backpropagation algorithm to update the predictor’s model
parameters.

C. Human-in-the-loop accent error correction

1) Motivation: The HITL framework aims to improve the
adaptability of synthetic speech by involving human listeners
in the accent error correction process. The core idea is to make
a human listener serve as teacher who tells correct accent
annotations on the synthetic speech, presumably containing
some errors, to the TTS model.

2) Accent error correction and its interface: Fig. 2 shows
the interface and overview of our HITL framework. The
interface consists of five components: 1) a target text and its
corresponding mora sequences, 2) radio buttons to annotate
a high/low accent for each mora (hiragana), 3) a button
to synthesize speech with the annotated accent patterns, 4)
human listeners and 5) a voice playback button to listen to

the synthesized speech. In our framework, human listeners
annotate accent patterns of the text by clicking either of
the upper/lower radio buttons for each mora. To improve
the reliability of annotation results, we allow the listeners
to confirm the results of their annotations by playing back
synthetic speech generated from our model with the annotated
accents and continue to modify the annotations if needed.
After this “annotation and synthesis” HITL finishes, we can
obtain multiple candidates for the accent pattern of the target
text from the listeners.

3) Feedback aggregation: A simple way to reflect the
accent annotation feedback in our TTS model is to choose
one from all annotation results and to use it for synthesizing
speech. However, the ability of accent annotation differs from
listener to listener, and some listeners can provide feedback
that even worsen the quality of synthetic speech. Therefore,
we aggregate the multiple annotation results corrected through
our HITL framework using the following methods.

• Mode: Taking the mode of high/low accents for each
mora.

• Multi annotator competence estimation (MACE) [18]:
Estimating the unknown answers for annotations and
the annotator’s ability, based on the expectation-
maximization algorithm. As a result, the outcomes of
listeners with low ability are excluded from the feedback
aggregation.

IV. EXPERIMENTS

A. Conditions for basic TTS

We used the JSUT corpus [19], which consists of Japanese
speech by a female speaker. The speech data was downsam-
pled to 22,050 Hz, and the dimension of the mel-spectrogram
was 80. For F0 analysis, the WORLD vocoder [20] was used.
The number of training and evaluation data were 4,488 and
512 sentences in the BASIC5000 subset of the JSUT corpus,
respectively. We used the implementation of FastSpeech 2
provided on GitHub1. The phoneme alignment was obtained
by Julius [21]. We used tdmelodic [22] as a dictionary
for the text analysis lexicon to enable the estimation of
accurate accents for a variety of texts. The dimensions of
all embeddings were set to 256, and the optimizer for DNN
training was Adam [23] with a learning rate of 0.001. The
neural vocoder was HiFi-GAN [24] pretrained and published
as UNIVERSAL V12. For the BERT model, we used bert-
base-japanese-v23. In addition, the dimension of the word
embedding was compressed from 768 to 256 by a linear
projection layer.

The following four methods were compared.
• FS2: FastSpeech 2 trained without conditioning on any

prosody symbols.

1https://github.com/Wataru-Nakata/FastSpeech2-JSUT
2https://github.com/jik876/hifi-gan
3https://huggingface.co/cl-tohoku/bert-base-japanese-v2



• FS2+Symbols: FastSpeech 2 trained by conditioning on
the interpretable prosody symbols directly. First, a text
and its corresponding prosody symbols are input into
FastSpeech 2. Next, the text is converted to phoneme
embeddings and the prosody symbols are converted to
prosodic embeddings. Finally, those elements and word
embeddings are summed and input to FastSpeech 2’s
encoder for learning and inference.

• FS2+Predictor: The proposed method described in Sec-
tion III.

• FS2+Predictor (target): The DNN architecture and its
training procedure were the same as the FS2+Predictor
but the ground-truth prosody symbols (i.e., derived from
the text analysis using an accent dictionary) were used
as the input.

To investigate the effect of the prosody predictor, we add
the method FS2+Symbols method, which directly conditions
FastSpeech 2 by the prosody symbols. The number of training
steps for each TTS model was 100,000.

B. Conditions for HITL accent error correction

Experiments on the HITL framework for accent error cor-
rection in TTS were conducted with crowdworkers recruited
through the crowdsourcing platform Lancers4. To assess
whether our HITL framework can effectively collect accent
error correction feedback, we used the VOICEACTRESS100
(VA100), a subset of the JSUT corpus including many texts
(100 sentences) whose accents are difficult to estimate, such
as proper nouns and coined words. The accents for each
sentence in the VA100 subset were annotated by 15 different
crowdworkers, i.e., 15 × 100 = 1500 crowdworkers in this
experiment. The 15 collected prosody symbol sequences per
sentence were then aggregated into a single sequence using
“Mode” or “MACE”. In addition, we synthesized speech
using all sequences and took the root mean squared error
(RMSE) of the logarithmic fundamental frequency (logF0)
between the synthesized and natural speech, and chose sam-
ples based on the logF0 values: the lowest (Best), in the center
(Median), and the highest (Worst).

C. Objective evaluation

We conducted an objective evaluation to examine the
prosody prediction accuracy of the newly introduced prosody
predictor. In order to focus only on pitch prediction accuracy,
we used the duration of natural speech for TTS in this
experiment, and we used the logF0 RMSE [cent] as the
evaluation criterion.

Fig. 3 shows a violin plot of the objective evaluation results
that compare the performances of four methods. As we can
see, FS2+Predictor performs worse than FS2+Symbols, but
FS2+Predictor (target) is comparable to FS2+Symbols. These
results indicate that 1) errors in the newly introduced prosody

4https://www.lancers.jp/

FS2+SymbolsFS2 FS2+Predictor FS2+Predictor
(target)

Fig. 3. Objective evaluation results of four compared methods. We used 512
utterances in BASIC5000 subset calculate logF0 RMSE.

FS2 FS2
+Symbol

FS2
+Predictor

FS2
+Predictor
(target)

Best Median Worst Mode MACE

Fig. 4. Results of objective evaluation of four compared methods and our
HITL framework. We used 100 utterances in VA100 subset to calculate logF0
RMSE.

predictor significantly degrade the prosody prediction perfor-
mance, but 2) the degraded performance can be improved if
the ground-truth prosody symbols are available.

Fig. 4 shows the objective evaluation results that examine
the effectiveness of our HITL framework. From this figure,
FS2+Predictor is worse than FS2 or FS2+Symbols. How-
ever, the upper outliers in FS2 and FS2+Symbols tend to
improve by introducing the prosody predictor. One of the
causes might be the effect of training the prosody predictor
together with the TTS model. Focusing on the results of
our HITL framework (Best, Median, and Worst), there are
non-negligible differences in the ability of crowdworkers
to annotate accents of synthetic speech. Furthermore, the
two aggregation methods, Mode and MACE, achieve the
logF0 comparable to that of FS2+Predictor (target). These
results indicate that our HITL framework can collect accent
annotations sufficient to synthesize speech produced by using
the text-analysis-derived prosody symbols.

D. Subjective evaluation

We conducted a subjective evaluation of the prosodic
naturalness to determine whether the tendency shown in the
objective evaluation is similar to that in the human evaluation.
All subjective evaluations were conducted using Lancers.

1) Evaluation results of four TTS methods: We first con-
ducted a series of preference AB tests to compare all combi-
nations of the four TTS methods except for the FS2+Predictor
and FS2+Predictor (target) pair. In the method-pairwise test,
each listener evaluated 10 pairs of speech samples synthesized
by a specific method-pair. The number of listeners for each
AB test was 25, i.e., 25 × 5 = 125 listeners participated in
the evaluation.

Table II shows the results of preference AB tests. As we
can see, the FS2+Predictor (target) score is better than that



TABLE II
PREFERENCE SCORES FOR PROSODY NATURALNESS OF SYNTHETIC

SPEECH. BOLD DENOTES A SIGNIFICANT DIFFERENCE BETWEEN THE
TWO METHODS (p < 0.05).

Compared method Preference score
FS2 vs. FS2+Predictor 0.552 vs. 0.448

FS2 vs. FS2+Predictor (target) 0.268 vs. 0.732
FS2+Symbols vs. FS2+Predictor 0.768 vs. 0.232

FS2+Symbols vs. FS2+Predictor (target) 0.520 vs. 0.480
FS2 vs. FS2+Symbols 0.248 vs. 0.752

of FS2+Predictor. The lack of significant difference between
FS2+Symbols and FS2+Predictor (target) indicates that the
newly introduced prosody predictor can synthesize speech
with natural prosody if the prosody prediction is correct.

Then, we conducted a mean opinion score (MOS) test
to compare the four methods and the ground-truth JSUT
speaker’s voices regarding the naturalness of speech prosody.
We prepared four speech samples for each method in the
MOS test and presented them to listeners in random order.
The listeners rated the naturalness of each sample on a 5-point
scale (1: very poor–5: very good). The number of listeners
was 50, and each listened to 20 speech samples.

Table III shows the MOS test results. The tendencies of
the results are similar to those obtained in the objective
evaluation, i.e., FS2+Symbols and FS2+Predictor (target) are
significantly better than the others and the two methods are
comparable. These results demonstrate that our simplified
prosody symbols are sufficient in improving the naturalness
of prosody in synthetic speech.

2) Evaluation results of HITL accent error correction:
Finally, we conducted a MOS test to verify the effectiveness
of our HITL framework. We compared the same methods as
shown in Fig. 4 except for FS2 and FS2+Symbols because
we focused on the correctness of obtained accent annotation
feedback in the proposed method. The number of listeners
was 50, and each evaluated 28 speech samples.

Table IV shows the MOS test results. The results of
FS2+Predictor and Worst are significantly lower than the
others, which indicates that 1) prediction errors of the newly
introduced prosody predictor can degrade the speech natural-
ness and 2) the choice of annotation results substantially affect
the naturalness. Meanwhile, Mode and MACE achieve MOSs
significantly higher than that of FS2+Predictor, indicating
that our HITL framework can successfully compensate for
accent errors in end-to-end TTS and contribute to the quality
improvement of synthetic speech. In addition, there is no
significant difference between scores of Mode and MACE,
which suggest that the majority of the crowdworkers had high
ability and the effect of crowdworkers with low ability was
minor.

V. CONCLUSION

In this paper, we proposed an end-to-end TTS method that
can easily correct accent errors in synthetic speech based on
human listeners’ feedback. We presented an HITL framework

TABLE III
MOS IN TERMS OF NATURALNESS OF SYNTHETIC SPEECH (TTS MODEL

EVALUATION). BOLD VALUE IS COMPARABLE TO THAT OF
FS2+SYMBOLS (p > 0.05).

Method MOS ± 95% confidence interval
JSUT 4.24 ± 0.139

FS2+Predictor 2.76 ± 0.143
FS2+Predictor (target) 3.35 ± 0.163

FS2+Symbols 3.45 ± 0.158
FS2 2.71 ± 0.157

TABLE IV
MOS IN TERMS OF NATURALNESS OF SYNTHETIC SPEECH (HITL

EXPERIMENT EVALUATION). BOLD VALUES ARE HIGHER THAN THOSE
OF FS2+PREDICTOR (p < 0.05).

Method MOS ± 95% confidence interval
FS2+Predictor 2.87 ± 0.163

FS2+Predictor (target) 3.54 ± 0.156
Best 3.62 ± 0.151

Median 3.38 ± 0.156
Worst 2.84 ± 0.174
Mode 3.63 ± 0.159

MACE 3.49 ± 0.161

that corrects accent errors using collective intelligence. The
experimental results show that the proposed HITL framework
works well in correcting errors in the synthesized speech and
contributes to quality improvement. As future work, we will
conduct further studies on the user interface of feedback and
how to integrate the obtained prosodic sequences.
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