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Abstract—To facilitate smooth communication between a hu-
man (client) and an avatar/robot, it is essential to generate
avatar/robot speech that reduces the listening effort for the client
in noisy acoustic environments. In this paper, we propose a
framework for the following two purposes by leveraging the
estimated noise using our previously proposed real-time blind
speech extraction method: (i) real-time adjustment so that the
power of the avatar/robot speech relative to that of the estimated
noise is constant and sufficiently large, and (ii) mimicking the
Lombard effect by simply applying filters to the avatar/robot
speech. The proposed framework can also smoothly connect
speeches generated from voice conversion (avatar) and text-to-
speech (robot) techniques. Subjective evaluations demonstrated
that the proposed framework achieves natural synthesis in noisy
environments.

I. INTRODUCTION

Systems that allow human-like avatars and robots to interact
with humans (clients) have been researched and developed
for decades [1]. One essential component for realizing such
systems is an autonomous dialogue system for robots [2]. By
utilizing advances in technologies such as automatic speech
recognition (ASR) [3], dialogue control [4], response genera-
tion [5], and text-to-speech (TTS) [6], robots can respond to
clients’ queries flexibly. These advances in automatic dialogue
are expected to reduce human resources by replacing roles that
only humans can take conventionally. However, in practical
applications, irregular cases that an autonomous robot cannot
deal with may exist (e.g., speech recognition errors and out-
of-domain dialogue scenes). In such cases, the robot can be
switched to an avatar, and a human operator can take over the
response to handle client’s questions. In this way, by having
an automatic dialogue in normal cases and by having a human
operator intervention only when necessary, a single operator
can concurrently control multiple avatars. As a result, the
number of avatars that a single operator can control increases,
leading to a reduction in human resources. Additionally, in this
case, the consistency between the avatar and robot speakers can
be maintained by converting the operator’s voice to the robot’s
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speaker voice using a voice conversion (VC) technique [7].
On the other hand, since the power of the voice output by
VC is correlated with that of the input voice spoken by the
operator, there can be a large difference in power between
the automatic speech (TTS) and the converted speech of the
operator (VC). As a result, clients may feel discomfort owing
to the discontinuity of speech that they hear. In the following,
the robot’s voice generated by a TTS technique, the voice
converted from the operator’s speech using a VC technique,
and the avatar’s/robot’s voice that the clients hear are called
TTS voice, VC voice, and synthesized voice, respectively. In this
paper, we address a practical situation where an avatar/robot
interacts with a single client in real-world noisy environments.

In such cases, the background noise makes a client’s and
synthesized voices obscure. Consequently, the client and the
avatar’s operator have difficulty listening to each other’s
speech, and the accuracy of ASR for the robot is also degraded.
To extract the client’s speech from the audio signals observed
by a microphone array embedded in the avatar/robot, we pre-
viously proposed a real-time speech extraction framework [8].
This is expected to make it easier for the operator to understand
the client’s speech and improve the accuracy of ASR in noisy
environments. On the other hand, since noise information
is discarded through speech extraction, the avatar’s operator
and the robot cannot consider the background noise in the
client’s environment and cannot always generate a voice that
the client can hear easily in noisy environments. As a result,
the synthesized voice remains hidden in noise, which hinders
smooth communication.

In this paper, we propose a framework for generating natural
and audible speech for the client. In this framework, we utilize
the property of a linear demixing filter, that is, it can accurately
separate noise signals in a situation where a single directional
target speaker exists in diffuse noise [9]. By utilizing this
property, we estimate the client’s background noise in real time
using the multichannel speech extraction method proposed in
[8] and adjust the power of the synthesized voice to be audible
with less listening effort according to the estimated noise level.
This adjustment results in the continuity of the power of the
synthesized voice when switching between the TTS and VC



voices. Additionally, to further improve the intelligibility of
the synthesized voice for the client in noisy environments,
we partly simulate the Lombard effect [10], [11], which is
the involuntary change in human speech features in noisy
environments, on the synthesized voice. Subjective evaluations
showed that the synthesized voice generated by our proposed
framework sounds natural in noisy environments compared
with that generated without processing or by simply applying
a constant gain.

II. RELATED WORKS

A. Real-time speech extraction framework

In [8], we previously proposed the real-time speech extrac-
tion framework based on independent low-rank matrix analysis
(ILRMA) [12] and rank-constrained spatial covariance matrix
estimation (RCSCME) [13]. In ILRMA, the short-time Fourier
transform (STFT) is utilized to process the observed audio
signals in the time-frequency domain. Let us define the STFTs
of the observed, source, and separated signals as xij ∈ CM ,
sij ∈ CN , and yij ∈ CN , respectively. Here, i ∈ {1, ..., I},
j ∈ {1, ..., J}, m ∈ {1, ...,M}, and n ∈ {1, ..., N} are the
indices of the frequency bins, time frames, microphones, and
sources, respectively. If each source is a point source and the
reverberation time is sufficiently shorter than the STFT window
length, the observed signal is approximately represented as
xij = Aisij . Here, Ai = (ai1, ...,aiN ) ∈ CM×N is the
mixing matrix and ain is the steering vector for the nth
source to the microphone array. In ILRMA, under a determined
condition (M = N ), we estimate the time-invariant demixing
matrix Wi ∈ CN×M and subsequently separate the observed
signals into each source signal as yij = Wixij . Here, to
resolve the scale ambiguity in each frequency bin of the
separated signals, the frequency-wise scale of each separated
signal is aligned with that of the observed signal at the
reference microphone channel using projection back (PB) [14].

However, when we apply ILRMA to a mixture that con-
sists of a directional target speech and diffuse noise, one
separated signal corresponding to the target speech includes
diffuse noise components [15]. On the other hand, the other
separated signals contain only diffuse noise and suppress the
target speech with high accuracy [9]. RCSCME utilizes these
properties of the separated signals and efficiently estimates the
parameters for a multichannel Wiener filter. RCSCME uses
parameters estimated by ILRMA to reduce the number of
to-be-estimated parameters and can achieve rapid processing.
However, it is difficult to extend the speech extraction method
consisting of ILRMA and RCSCME for real-time processing
in a straightforward manner because the update algorithm for
ILRMA is computationally costly owing to numerous matrix
operations. Here, we exploit two facts: 1) the ILRMA output
required in RCSCME is only the time-invariant demixing
matrix and 2) RCSCME itself is computationally efficient and
can be executed within the shift length of the STFT. On the
basis of these facts, in [8], a framework that performs ILRMA
and RCSCME in parallel by introducing the blockwise batch

algorithm [16], [17] has been proposed. This framework can
execute RCSCME at the shift length intervals and output the
extracted target speech with low latency (less than 100 ms,
excluding input/output latency). On the other hand, since it is
difficult to perform ILRMA within the shift length, it estimates
and outputs the demixing matrix at longer time intervals.

Since ILRMA is a fully blind method, it is necessary
to select the channel containing the target speech from the
separated signals without any prior information. However, by
introducing a regularizer based on spatial prior information
into ILRMA, we can induce the separated signal at a specific
channel to contain the target speech. As one such regularizer,
in [8], ILRMA with null-based spatial regularization (NSR-
ILRMA) has been proposed. The spatial regularization term
is calculated using a steering vector for the target speech,
âi, derived from prior information about the client’s position
against the avatar/robot. The cost function of NSR-ILRMA is
expressed as
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where rijn > 0 denotes the time-varying variance of the
separated signal yijn, const. represents the term independent
of win and rijn, and ·H is the Hermitian transpose. Here,
n(t) is a prespecified channel index corresponding to the target
speech. This regularizer induces win (n ̸= n(t)) to form the
null in the direction of the target speech, and thus, win(t) seems
to correspond to the target speech. The process of minimizing
(1) is detailed in [8]. In this case, we can choose n(t) for the
channel selection.

B. Lombard effect

The Lombard effect is the involuntary modification of the
characteristics of human speech produced in noisy environ-
ments to enhance its audibility and intelligibility for listen-
ers [10]. It has been reported that the Lombard speech, which
refers to speech produced under the Lombard effect, exhibits
changes in various characteristics, such as its power, spectral
characteristics, and fundamental frequency [11]. In [11], the
spectra of speech produced in a markedly noisy environment
were compared with those produced in a quiet environment.
This comparison showed an average increase in the power of
approximately 5 dB in the low-frequency band around 200 Hz
and in the high-frequency band above 5000 Hz, whereas an
average increase in the power of approximately 15 dB is
observed in the frequency band around 500 to 4000 Hz. It
is also reported that relative to quiet environments, the mean
vocal level (the power of speech) increased by approximately
14.5 dB.

III. PROPOSED METHOD

A. Motivation

A simple approach to improving audibility in noisy envi-
ronments is by applying a constant gain to the synthesized



Fig. 1. SIR improvements of the target speech (above) and diffuse noise
(below) estimated by proposed method with offline NSR-ILRMA.

voice. However, since noise is unstationary, a fixed gain
can be an inappropriate setting. For example, if the gain is
small, the synthesized voice can remain inaudible in very
noisy environments, and conversely, if the gain is large, the
synthesized voice can become uncomfortably loud in quiet
environments. Therefore, we must adaptively adjust the gain
to the noise intensity in real time.

To address this issue, we propose a method to estimate the
power of time-varying noise in real time and adjust that of the
synthesized voice to ensure that the power of the synthesized
voice is sufficiently higher than that of noise at a constant rate.
This approach is expected to generate an audible voice suitable
for various noisy environments. Moreover, even in a special
case where TTS and VC voices switch, this processing makes
the power of the synthesized voice almost constant as long as
the noise power does not change abruptly, enabling a smooth
connection of the synthesized voice. If the observed signals
are directly used to calculate the noise power without any
processing, the client’s speech might be erroneously considered
as background noise. Therefore, the power of synthesized
voice increases in correlation with not only the power of
the background noise but also that of the client’s speech. As
a result, even if the environment is consistently quiet, the
synthesized voice will become louder when the client speaks
loudly. Therefore, a method is required to suppress the client’s
speech and estimate only the noise power in real time.

B. Proposed real-time noise estimation procedure

In this section, we aim to remove the target speech and
estimate the noise accurately in real time. First, we focus on
the characteristics of source separation methods based on the
linear demixing filter, such as ILRMA. In [9], it is reported
that the linear demixing filter can accurately separate noise
signals in a situation where a single directional target speaker
exists in diffuse noise. In this situation, the observed signal
xij can be represented as xij = ãis̃ij + uij , where ãi and
s̃ij denote the steering vector and the source signal of the
target speech, respectively, and uij denotes the source image
of diffuse noise. By performing the real-time speech extraction
method with NSR-ILRMA, we can obtain the linear demixing
matrix Wi and the index corresponding to the target speech
n(t) in real time. Here, the scale of Wi is modified by PB as

Wi ← diag
(
eHmref

W−1
i

)
Wi, (2)

where diag(d1, ..., dN ) denotes the operator that outputs an
N × N diagonal matrix whose diagonal elements are given
by the vector (d1, ..., dN ), mref is the index of the reference

microphone channel, and em ∈ CM is a one-hot vector with
1 only in the mth element. By utilizing these parameters, we
can define the estimated noise signal ûij as

ûij =
∑

n ̸=n(t)

wH
inxij . (3)

Here, we focus on the facts that the demixing filters win (n ̸=
n(t)) can form the null of the steering vector for the target
speech ãi and then wH

inãi ≈ 0 (n ̸= n(t)), resulting in
ûij =

∑
n ̸=n(t) wH

inuij . We note that the noise power is
reduced compared with the true value by the noise component
leaking in the target speech direction, wH

in(t)uij . We exper-
imentally verified this characteristic, and Fig. 1 shows the
source-to-interference ratio (SIR) [18] improvements for the
target speech and the diffuse noise when offline NSR-ILRMA
is applied to mixture signals consisting of a single directional
target speech and diffuse noise. The experimental conditions
for Fig. 1 are as follows: We used a 4.2-s-long female speech
signal from the JSUT dataset [19] as a dry source. Then the
dry source was convolved with the recorded impulse response
and its signal length was adjusted to 5.12 s by padding with
the zero value. The recording conditions for both the diffuse
noise and impulse response and the settings for STFT were the
same as those described in Section IV-A. The target speech was
mixed with the diffuse noise so that the input signal-to-noise
ratio (SNR) became 0 dB for the entire signal at a reference
microphone channel except for the silent intervals. We applied
NSR-ILRMA to the mixture signal, and an estimated noise
signal was then obtained by calculating (3). As demonstrated
in Fig. 1, we empirically confirmed that NSR-ILRMA can
separate the background noise with higher accuracy than in
the case of the target speech under the experimental conditions
used in this study. This result is consistent with [9], [13].
Moreover, it is expected that we can accurately estimate the
diffuse noise in real time using the real-time speech extraction
method.

Using the real-time estimated noise, we attempt to gener-
ate audible speech by applying a time-varying gain to the
synthesized voice so that the ratio between the power of
the output speech and noise estimated in real time is con-
stant. Furthermore, by imitating the spectral energy changes
described in Section II-B, we simulated the Lombard effect
on the synthesized voice. These modifications will enable the
generation of more natural-sounding speech across diverse
noisy environments.

C. Proposed framework

Fig. 2 illustrates our proposed framework. In the following,
we describe the details of the processing part highlighted in
red frame.

1) SNR modification using real-time noise estimation: First,
we consider modifying the vocal level of the synthesized
voice. For the client to hear the synthesized voice clearly in
noisy environments, we should calculate the gain to achieve
a specified output SNR. This requires obtaining the power of
both the synthesized voice and noise.
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Fig. 2. Schematic of proposed framework for dialogue system embedded in avatar/robot.

For the power of the synthesized voice, sample speeches are
prepared for both TTS and VC voices, and their powers are
precalculated as references. That is, when a T (l)-sample-long
segment of TTS or VC voices s(l)sample[t] (l ∈ {TTS,VC}, t =
1, ..., T (l)) is given beforehand, we define the average power
(the power per unit time) of the synthesized voice S(l) as

S(l) =
1

T (l)

T (l)∑
t=1

(
s
(l)
sample[t]

)2
. (4)

On the other hand, for the noise power, to suppress the
client’s speech and adapt to the time-varying noisy environ-
ment, we use the noise signal estimated at the shift length
intervals using the real-time speech extraction framework and
(3). Here, to suppress the rapid changes in noise power, the
exponential smoothing method is introduced and noise infor-
mation history is also considered. The noise signal estimated
by the real-time speech extraction framework is denoted as
u[t]. This noise signal u[t] is estimated at every shift length
∆T . For the integer k, the noise power estimate Uk for the
time t = (k−1)∆T+1, ..., k∆T is defined using the estimated
noise signal at that time interval as

Uk = (1− λ)Uk−1 +
λ

∆T

k∆T∑
t=(k−1)∆T+1

(u[t])
2
, (5)

where λ ∈ (0, 1] denotes a forgetting factor and U0 is set to
0.

Finally, when the output SNR is set to R, the time-varying
gain α

(l)
k for the synthesized voice is calculated as

α
(l)
k = 10

R
20

√
Uk

S(l)
. (6)

2) Simple imitation of Lombard effect: Next, to imitate
the increased energy in the relatively high-frequency band
observed in the Lombard speech, we consider boosting the
energy in the 500–4000 Hz range by 5–10 dB compared with
the other frequency bands. In this paper, we apply a bandpass
filter that allows the 500–4000 Hz frequency band to pass
through and an all-pass filter with a similar phase response
to the bandpass filter to the input TTS/VC voice in parallel.
Subsequently, the filtered signals are summed. That is, if the
transfer functions of the bandpass and the all-pass filters in the
z-domain are represented as hB(z) and hA(z), respectively,
the transfer function of our proposed filter is expressed as
hB(z) + hA(z).

Fig. 3. Magnitude frequency response for proposed filter.

The bandpass filter hB(z) is designed as follows: 5th-order
Butterworth type, a passband of 500–4000 Hz, a passband
ripple of 3 dB, stopband frequencies of 50 and 7000 Hz, and
a stopband attenuation of 60 dB. The cutoff frequencies of
this filter become about 376 and 4720 Hz. Then, the 5th-order
infinite impulse response all-pass filter hA(z) is designed by
searching for parameters using a greedy algorithm to minimize
the mean squared error between phase responses of this filter
and the bandpass filter. Here, the gain of the bandpass filter
relative to that of the all-pass filter is determined to increase the
energy in the passband by 10 dB. The magnitude frequency
response of the proposed filter hB(z) + hA(z) is shown in
Fig. 3.

Since this filtering affects the power of the entire output
speech, the processing should be conducted in the following
order: first, perform the filtering described in this section,
and then perform the SNR modification described in Sec-
tion III-C1.

IV. EXPERIMENTS

In our experiments, we consider three application scenarios
where a human and an avatar/robot are talking under a diffuse-
noise condition: (i) listening to only the TTS voice, (ii)
listening to only the VC voice, and (iii) listening to the TTS
voice followed by the VC voice almost continuously with
different powers. We evaluate the effectiveness of the proposed
method by subjective evaluation.

A. Experimental conditions

Diffuse noise and impulse responses were recorded at the
Ito International Research Center, The University of Tokyo.
A circular microphone array with a radius of 3.25 cm and
composed of four omnidirectional microphones was placed
at a height of 1 m from the floor. During the diffuse noise
recording, 10 participants were seated 2–4 meters apart from
the microphone array and engaged in conversations with others



TABLE I
PREFERENCE SCORES ON NATURALNESS OF OUTPUT VOICE. VALUES ENCLOSED IN PARENTHESES DENOTE p-VALUES OF STUDENT’S t-TEST. BOLD

INDICATES SIGNIFICANTLY (p-VALUE < 0.025) BETTER SCORES.

Case Noise condition Number of evaluators Baseline / Naive Baseline / Proposed Naive / Proposed

−5 dB 26 0.115 / 0.885 (< 10−10) 0.154 / 0.846 (< 10−10) 0.558 / 0.442 (9.70× 10−2)

(i) 0 dB 28 0.098 / 0.902 (< 10−10) 0.089 / 0.911 (< 10−10) 0.268 / 0.732 (< 10−10)

5 dB 25 0.070 / 0.930 (< 10−10) 0.040 / 0.960 (< 10−10) 0.100 / 0.900 (< 10−10)

−5 dB 25 0.110 / 0.890 (< 10−10) 0.030 / 0.970 (< 10−10) 0.090 / 0.910 (< 10−10)

(ii) 0 dB 25 0.110 / 0.890 (< 10−10) 0.060 / 0.940 (< 10−10) 0.040 / 0.960 (< 10−10)

5 dB 25 0.050 / 0.950 (< 10−10) 0.020 / 0.980 (< 10−10) 0.020 / 0.980 (< 10−10)

−5 dB 24 0.083 / 0.917 (< 10−10) 0.073 / 0.927 (< 10−10) 0.094 / 0.906 (< 10−10)

(iii) 0 dB 25 0.090 / 0.910 (< 10−10) 0.030 / 0.970 (< 10−10) 0.060 / 0.940 (< 10−10)

5 dB 26 0.058 / 0.942 (< 10−10) 0.067 / 0.933 (< 10−10) 0.038 / 0.962 (< 10−10)

around them or read a text provided to them beforehand. Si-
multaneously, music was played from loudspeakers embedded
in the ceiling. The impulse responses were recorded under
the following conditions: the height of the target speaker was
1.1 m, the horizontal distance between the target speaker and
the microphone array was 1 m, and the reverberation time T60

was around 750 ms.
Next, we describe the processes for synthesizing the TTS

and VC voices. For both, the synthesized speech speaker was
one female speaker from the SaSLaW corpus [20]. For the
TTS voice, FastSpeech 2 [21] was used as the deep neural
network model to output the mel-spectrogram of the speech,
and the trained HiFi-GAN [22] was used as the vocoder to
generate the speech waveform. The details of TTS models
are based on [20]. Then, FastSpeech 2 was pretrained on the
JSUT dataset [19] and fine-tuned on single-speaker recordings
of SaSLaW. For the VC voice, RVC1 trained on the synthesized
speech speaker’s data was used, and the input speaker was one
female speaker from the JVS corpus [19].

In this paper, we simulate a situation where the VC voice
is quieter and more difficult to hear than the TTS voice in
different noisy environments. To achieve this, the VC voices
were adjusted so that the average power of each VC voice
became −5 dB relative to that of each TTS voice. Here, the
TTS voices used were adjusted beforehand so that their average
power became constant. Then, we adjusted the noise signal so
that the average power of the noise signal at the reference
channel became −5, 0, and 5 dB relative to that of the TTS
voice, thereby creating three types of noise condition. We note
that, as a result, the SNRs of the TTS voice were 5, 0, and
−5 dB, and the SNRs of the VC voice were 0, −5, and −10
dB, in the same order as above. Then, for experiments (i) and
(ii), to obtain clean synthesized speech signals, two utterances
were selected from either TTS or VC voices and concatenated
with 5-s-long silent intervals in between. The silent interval
before the first utterance was used to calculate the noise power
sufficiently and the silent interval between the utterances was
used to simulate a conversation between a human and an

1https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-
WebUI

avatar/robot. Similarly, for experiment (iii), a clean synthesized
speech signal was created by concatenating a 5-s-long silent
interval, one TTS utterance, a 1-s-long silent interval, and one
VC utterance in this order. The 1-s-long interval between the
TTS and VC utterances simulates a scene where the operator
intervenes suddenly, whereas the 5-s-long silent interval before
the TTS utterances serves the same purpose as in (i) and
(ii). In total, there were nine experimental conditions: Three
experimental scenarios and three noise mixing conditions.
For each experimental condition, 10 clean synthesized speech
signals were created. The clean synthesized speech signals
created in this way are referred to as standard speech signals.

Next, we describe how to generate the input signals for
the real-time speech extraction framework in each noisy envi-
ronment. To simulate client utterances in noisy environments,
we used single-female-speaker utterances from the JSUT
dataset [19] as client’s dry sources. These utterances were
within 5 s in length. After convolving the dry sources with the
impulse responses, the resulting signals were mixed with the
noise signals after power adjustment with TTS voices. In the
mixing process, the average power of each convolved signal
was adjusted to be 0 dB relative to the power of the noise,
and the timing of each convolved signal was aligned with the
5-s-long silent intervals inserted before two TTS or VC voices
in the experiments (i) and (ii), and before the first TTS voice
in the experiment (iii). The sampling rate of all signals was
set to 16 kHz.

For comparison, the following three methods were used.
• Baseline: the standard speech signals are output without

any additional processing.
• Naive: signals applied at a constant gain of +10 dB to

the standard speech signals are output.
• Proposed: signals adjusted by the proposed real-time

framework with an output SNR of R = 15 dB for each
noise power estimate are output.

For the real-time speech extraction framework, NSR-ILRMA
was used in the ILRMA part described in [8], and the other
conditions were also the same as those in [8]. STFT was
performed using a 64-ms-long Hann window with a shift
length of 32 ms. The sample speeches s(TTS)

sample[t] and s
(VC)
sample[t]



used for SNR modification were generated by selecting one
utterance from TTS and VC voices, respectively, and applying
the filtering process described in Section III-C2. For the
forgetting factor λ, we set it to 0.5 by experimentally choosing
it from some values in (0, 1].

For subjective evaluation, we generated evaluation speech
signals to simulate listening under each noise condition by
mixing the output speech signal for each compared method
with the corresponding noise signal. Then, two of the three
evaluation speech signals were selected as an evaluation pair,
and AB preference tests (listening tests) were conducted for
each pair to determine which evaluation speech signal sounded
more natural in a noisy environment. Each evaluator listened
to and evaluated a total of 12 evaluation pairs containing the
same number of evaluation pairs for each combination of the
compared method.

B. Subjective evaluation

For each experiment and each noise mixing condition, 24–28
evaluators were recruited and 96–112 responses were collected
via the crowdsourcing platform “Lancers”2. The significant
differences in preference scores were evaluated using Student’s
two-tailed t-test with a significance level of 5%. The results are
shown in Table I. Under almost all experimental conditions, the
scores were significantly higher for Naive than for Baseline and
for Proposed than for Naive. We also consider the following to
be the reason why there was no significant difference between
Naive and Proposed only in the case (i) with a noise condition
of −5 dB. First, under this condition, the ratio between the
power of the TTS voice and noise signal was 5 dB. Therefore,
the synthesized voice was adjusted so that the resulting SNR
became 15 dB for Naive. On the other hand, Proposed also
functions so that the average power of the synthesized voice
became 15 dB relative to the noise power estimate under
this experimental condition. However, since noise components
remain in the separated signal corresponding to the target
speech by ILRMA, the noise power estimate is slightly lower
than the actual noise power. Then, in the gain calculation
(6), Uk becomes smaller and the gain also becomes smaller,
resulting in a slightly lower SNR than the ideal output SNR
of R = 15 dB. Thus, Naive has slightly higher power than
Proposed, making it easier and slightly more natural for the
client to hear in a noisy environment. This results in both
methods showing a competitive performance.

V. CONCLUSION

In this paper, for the dialogue system embedded in the
avatar/robot, we proposed a real-time framework to modify
the synthesized speech so that it is easy for clients to hear.
We estimated the noise power in real time by utilizing the
real-time speech extraction framework based on ILRMA and
RCSCME. In the postprocessing part, we performed (i) power
adjustment using estimated noise power in real time to make
the synthesized speech audible and (ii) filter processing to

2https://www.lancers.jp/

partially imitate the Lombard effect. Subjective evaluation ex-
periments confirmed that the proposed framework can generate
a more natural speech in noisy environments than the simple
approaches.
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