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Abstract—We propose a novel training algorithm for a multi-
speaker neural text-to-speech (TTS) model based on multi-task
adversarial training. A conventional generative adversarial net-
work (GAN)-based training algorithm significantly improves the
quality of synthetic speech by reducing the statistical difference
between natural and synthetic speech. However, the algorithm
does not guarantee the generalization performance of the trained
TTS model in synthesizing voices of unseen speakers who are
not included in the training data. Our algorithm alternatively
trains two deep neural networks: multi-task discriminator and
multi-speaker neural TTS model (i.e., generator of GANs).
The discriminator is trained not only to distinguish between
natural and synthetic speech but also to verify the speaker of
input speech is existent or non-existent (i.e., newly generated
by interpolating seen speakers’ embedding vectors). Meanwhile,
the generator is trained to minimize the weighted sum of the
speech reconstruction loss and adversarial loss for fooling the
discriminator, which achieves high-quality multi-speaker TTS
even if the target speaker is unseen. Experimental evaluation
shows that our algorithm improves the quality of synthetic
speech better than a conventional GANSpeech algorithm.

I. INTRODUCTION

Multi-speaker text-to-speech (TTS) [1] is a technology
for synthesizing various speakers’ voices from given text
using a computer. This technology can extend the application
range of TTS technology to personalized voice assistance
and data augmentation for speech-discriminative tasks [2],
[3]. State-of-the-art multi-speaker neural TTS, i.e., a machine-
learning-based framework for training deep neural networks
(DNNs) [4], [5] that represent the TTS mapping, has en-
abled synthesizing voices of various speakers comparable to
human speech [6]. Such quality improvement has mainly
arisen from developments of epoch-making DNN architec-
tures (e.g., Transformer [7]), well-designed and sufficiently
large multi-speaker speech corpora [8], [9], [10], accurate
speaker-identity modeling [11], [12], and sophisticated deep
generative models [13], [14], [15]. Well-trained multi-speaker
neural TTS models can be also applied to practical TTS
scenarios such as voice cloning (i.e., reproducing an unseen
speaker’s voice with few utterances) [16]. This paper focuses
on the development of an algorithm for training a high-fidelity
multi-speaker neural TTS model.

Generative adversarial networks (GANs) [13] are powerful
deep generative models that have significantly improved the
quality of synthetic speech in various TTS-related tasks, such
as statistical parametric TTS [17], [18], end-to-end TTS [19],

[20], and neural vocoding [21], [22]. The quality improve-
ment derives from their frameworks to adversarially train
two DNNs: discriminator and TTS model (i.e., generator),
for learning the distribution of real data. Specifically, the
discriminator is trained to distinguish between synthetic and
natural speech and approximate the divergence (i.e., statistical
difference) between them. Meanwhile, the generator is trained
to minimize the approximated divergence by fooling the
trained discriminator. This framework can be introduced into
the TTS training by defining the objective function as the
weighted sum of speech reconstruction loss (e.g., L1 or
L2 loss between natural and generated speech parameters)
and the adversarial loss for causing the discriminator to
misclassify synthetic speech as natural. As a result, synthetic
speech generated by the trained TTS model successfully
reproduces the fine structures of natural speech parameters
that tend to be over-smoothed by learning to minimize the
speech reconstruction loss only [23].

One can extend the GAN-based training algorithm for
multi-speaker neural TTS by conditioning the discriminator
and TTS model by speaker representation. Such representa-
tion can be obtained as a one-hot speaker code [1], train-
able lookup embedding [24], or intermediate vector of a
speaker encoder pretrained on speaker-discriminative tasks
(e.g., d-vector [25] and x-vector [26]). Zhao et al. [27]
proposed an algorithm to train a multi-speaker neural TTS
model conditioned by the speaker code and defined the
training objective as the speech reconstruction in both mel-
spectrogram and waveform domains and the adversarial loss
of the Wasserstein GAN [28] with gradient penalty [29].
Kanagawa et al. [30] modified the training objective of a
discriminator so that it can classify the speaker identity as well
as distinguish natural/synthetic speech. Yang et al. [31] pre-
sented GANSpeech, state-of-the-art multi-speaker neural TTS
model based on FastSpeech 2 [32] trained by a GAN-based
algorithm incorporating the joint conditional and uncondi-
tional (JCU) discriminator [33] and scaled feature matching
loss [34]. Although their algorithm achieved the quality of
synthetic speech approaching that of natural speech, it does
not guarantee the generalization performance of the trained
TTS model in synthesizing voices of unseen speakers who
are not included in the training data. The main reason is that
the GAN-based algorithm regards the distribution of natural
speech uttered by seen speakers as the target to be trained



and never considers whether the TTS model can synthesize
realistic voices of unseen speakers.

We propose a novel GAN-based multi-task training al-
gorithm for a multi-speaker neural TTS model that can
synthesize high-quality voices of unseen speakers. Like a
GAN-based algorithm, our algorithm alternatively trains two
DNNs: multi-task discriminator and multi-speaker neural TTS
model. The discriminator aims to not only distinguish between
natural and synthetic speech but also verify the speaker of in-
put speech is existent or non-existent (i.e., newly generated by
interpolating seen speakers’ embedding vectors). Meanwhile,
the TTS model tries to fool the discriminator by minimizing
the weighted sum of the speech reconstruction loss and
adversarial loss for fooling the discriminator. As a result, we
can expect the trained TTS model to synthesize high-quality
multi-speaker voices even if the target speaker is unseen.
Experimental evaluation shows that our algorithm improves
the quality of synthetic speech better than a conventional
algorithm used in the training of GANSpeech [31].

II. BASELINE METHODS

A. FastSpeech 2

FastSpeech 2 [32] is a non-autoregressive end-to-end TTS
model widely used as the backbone of various TTS meth-
ods [31], [35]. It performs 1) phoneme duration prediction
and sequence alignment using a duration predictor and a
length regulator, 2) speech feature prediction using multiple
variance adaptors, and 3) mel-spectrogram prediction using a
mel-spectrogram decoder. A trained neural vocoder takes the
predicted mel-spectrogram as input to synthesize a speech
waveform. Although the phoneme alignment information is
required in advance for the training, this TTS model can avoid
some crucial inference errors (e.g., looping or skipping of text
in synthetic speech) that often occur in autoregressive neural
TTS methods such as Tacotron2 [36].

Let X and Y be a text set consisting of N phoneme
sequences {xn}Nn=1 and a speech set consisting of N speech
parameter sequences {yn}Nn=1, respectively. A speech param-
eter sequence contains phoneme durations ydur, intermediate
features yfeat (e.g., F0 and energy) predicted by the variance
adaptors, and mel-spectrograms ymel. A FastSpeech 2-based
TTS model G(·) parameterized by θ(G) is trained to predict
parameters of synthetic speech ŷ∗ from x. The objective
function for training the model is given as:

L
(G)
FS2 (X ,Y) = MSE (ydur, ŷdur) +MSE (yfeat, ŷfeat)

+MAE (ymel, ŷmel) , (1)

where MAE(·) and MSE(·) denote the mean absolute er-
ror and mean squared error between two given features,
respectively. The model’s parameters θ(G) are optimized
by using the mini-batch stochastic gradient descent (SGD)
θ(G) ← θ(G) − η∇θ(G)L

(G)
FS2 with a learning rate η > 0.

B. Transfer-Learning-Based Multi-Speaker Neural TTS

We adopt Jia et al.’s method [11] for building our baseline
multi-speaker neural TTS model. In the training phase, a
DNN-based speaker encoder that extracts speaker embedding
from an input speech waveform is first trained on the ob-
jective function of speaker verification (e.g., minimizing the
generalized end-to-end loss [37]). A multi-speaker neural TTS
model is then trained to generate speech parameters from their
corresponding phoneme sequence and speaker embedding z.
In the inference phase, the embedding of a target speaker,
who may be unseen during the training, is first extracted from
reference speech uttered by the speaker. Then, the extracted
speaker embedding and input text are fed into the trained TTS
model to generate the target speaker’s mel-spectrogram.

C. GANSpeech

GANSpeech [31] is the improved version of multi-speaker
neural TTS based on FastSpeech 2, which incorporates the
GAN-based training algorithm to achieve high-quality TTS.

1) JCU Discriminator: A JCU discriminator D(·) param-
eterized by θ(D) is designed to capture general characteristics
of natural mel-spectrograms and speaker-specific features of
them. Specifically, the discriminator consists of three sub-
modules1: 1) shared layers DS(·), 2) conditional layers DC(·),
and 3) unconditional layers DU(·), to output conditional and
unconditional true/fake predictions, tC and tU, from a mel-
spectrogram ymel and speaker embedding z. First, a hidden
vector hS is extracted by the shared layers from an input
natural mel-spectrogram ymel as hS = DS(ymel). Then,
the conditional and unconditional predictions are obtained
as tC = DC(hS, z) and tU = DU(hS), respectively. The
same procedure is taken for a synthetic mel-spectrogram
ŷmel = G(x), and predictions t̂C and t̂U are obtained.

The discriminator is trained to distinguish natural speech
ymel from synthetic speech ŷmel, with or without the con-
ditioning by speaker embedding. The objective function is
defined as follows:

L
(D)
GAN (X ,Y) = 1

2

(
(tC − 1)

2
+ (tU − 1)

2
)

+
1

2

(
t̂2C + t̂2U

)
.

(2)

2) Adversarial Loss: The TTS model is trained to make
the discriminator misclassify synthetic speech as natural. The
adversarial loss to cause the misclassification is defined as
follows:

L
(G)
GAN (X ,Y) = 1

2

((
t̂C − 1

)2
+

(
t̂U − 1

)2)
. (3)

1We omit a fully-connected layer to transform speaker embedding for
simplicity.
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Fig. 1. Overview of proposed algorithm. The variables x, y, and z denote text, speech, and speaker embedding,
respectively. The interpolation coefficient α is sampled from the uniform distribution U(0.0, 0.5).

3) Scaled Feature Matching Loss: The feature matching
loss [29] is a well-known strategy to stabilize the GAN
training and improve the quality of generated data. The core
idea is to make the hidden vectors of the discriminator
extracted by generated data ĥl close to those of real data
hl by minimizing the following loss:

L
(G)
FM (X ,Y) =

L∑
l=1

1

Nl
∥ĥl − hl∥1, (4)

where Nl denotes the number of elements in the lth hidden
layer. In the GANSpeech training, a hyperparameter λFM to
control the importance of feature matching is dynamically
adjusted in accordance with the magnitude of reconstruction
loss as λFM ← L

(G)
FS2/L

(G)
FM.

4) GANSpeech Algorithm: The GANSpeech algorithm
consists of three phases: 1) TTS model pretraining, 2) discrim-
inator update, and 3) TTS model update. First, the TTS model
is pretrained by minimizing the reconstruction loss L

(G)
FS2

only. Then, the two DNNs, D(·) and G(·), are alternatively
trained. Specifically, the discriminator is updated as θ(D) ←
θ(D) − η∇θ(D)L

(D)
GAN, and the TTS model is trained to fool

the updated discriminator as θ(G) ← θ(G) − η∇θ(G)L
(G)
Total,

where the total loss for training the TTS model is given as
L
(G)
Total = L

(G)
FS2 + L

(G)
GAN + λFML

(G)
FM.

III. PROPOSE ALGORITHM

As mentioned in Section I, the GAN-based training algo-
rithm for multi-speaker neural TTS does not guarantee that the
trained model can synthesize high-quality speech of unseen
speakers. To deal with the issue, we propose a novel algorithm
for a multi-speaker neural TTS model to improve the quality
of unseen speaker’s synthetic speech.

A. Adversarially Constrained Autoencoder Interpolation
(ACAI)

The ACAI algorithm [38] aims to learn an autoencoder
that can generate realistic data from the convex combination
of two latent variables. The encoder E(·) extracts a latent
variable (i.e., embedding) z from input data y, and the
decoder G(·) reconstructs the data y from e. In addition

to this autoencoding process, ŷ = G(E(y)), a critic C(·)
regularizes the autoencoder so that interpolation between two
embedding vectors also provides realistic data by decoding.
This regularization is formulated as the adversarial training
between the autoencoder and critic. The critic is trained to
minimize the following loss function:

L
(C)
ACAI (Y) = ∥C (y)∥22 + ∥C (ỹα)− α∥22, (5)

where ỹ is decoded from the interpolated embedding with
an interpolation coefficient α ∼ U(0.0, 0.5) as G(αE(y1) +
(1 − α)E(y2)). The first and second terms enforce that the
critic outputs α = 0 for pure data without interpolation2 and
predicts the mixing coefficient of interpolated data, respec-
tively. Meanwhile, the autoencoder is trained to minimize the
following loss function:

L
(E,G)
ACAI (Y) = ∥y −G (E (y))∥22 + λACAI∥C (ỹ)∥22, (6)

where λACAI is a hyperparameter to control the effect of the
second term that makes the critic recognize the interpolated
data as non-interpolated one.

B. Multi-Task Adversarial Training Algorithm

We introduce the ACAI-derived regularization term to the
GANSpeech algorithm for training a multi-speaker neural
TTS model. Specifically, we regard a pre-trained speaker
encoder and the TTS model as an encoder E(·) and decoder
G(·) used in the ACAI algorithm, respectively. Furthermore,
we extend the JCU discriminator used in GANSpeech to a
multi-task discriminator D(·) that simultaneously predicts 1)
true or fake of input mel-spectrogram with/without condi-
tioning by speaker embedding and 2) coefficient of speaker
interpolation. Figure 1 shows the overview of our algorithm.
Our algorithm requires additional computation in training due
to the multi-task discrimination by D(·) but does not increase
the inference time.

2To stabilize the training in initial stage, the original algorithm mixes
true data and reconstructed data with a coefficient γ and regards it as the
non-interpolated data [38]. Our algorithm omits this process because it first
pretrains the decoder (i.e., TTS model) without any adversarial constraints.



1) Multi-Task Discriminator: Our multi-task discriminator
consists of four sub-modules: the three layers included in the
JCU discriminator of GANSpeech (i.e., DS(·), DC(·), and
DU(·)) and ACAI-derived critic layers C(·). The critic layers
predicts the speaker interpolation coefficient of input mel-
spectrogram α̂ from the hidden vector h(S) extracted by the
shared layers DS(·).

2) Forward Propagation: Let X = [x1,x2, . . . ,xM ] ∈ X
and Y = [y1,y2, . . . ,yM ] ∈ Y be mini-batches containing
M phoneme sequences and speech parameters, respectively.
In the forward propagation during the training, our algorithm
takes the following processes.

Speaker embedding extraction and interpolation: The
speaker encoder first extracts speaker embeddings Z =
[z1, z2, . . . ,zM ] from the speech parameters as Z = E(Y ).
Then, interpolation coefficients for each embedding α =
[α1, α2, . . . , αM ]⊤ are sampled from Uniform(0.0, 0.5). Fi-
nally, interpolated speaker embedding Z̃ = [z̃1, z̃2, . . . , z̃M ]
are calculated by using the convex combinations of the
original embeddings Z and their reversed vectors, i.e., z̃m =
αmzm + (1− αm)zM−m+1 for m = 1, 2, . . . ,M .

Multi-speaker TTS: The TTS model generates 2M
speech parameters, Ŷ = [ŷ1, ŷ2, . . . , ŷM ] and Ỹ =
[ỹ1, ỹ2, . . . , ỹM ], from input texts X paired with original
speaker embeddings Z and interpolated ones Z̃ as Ŷ =
G(X,Z) and Ỹ = G(X, Z̃), respectively. The natural and
generated speech parameters are used for the computation of
speech reconstruction loss L

(G)
FS2 shown in Eq. (1).

Multi-task discrimination: The discriminator outputs six
scalar values: true/fake predictions for { natural, generated }
mel-spectrograms { with, without } conditioning by speaker
embeddings and speaker interpolation coefficients for { pure,
speaker-interpolated } mel-spectrograms. These values are
used for the computation of the objective function L

(D)
MT =

L
(D)
GAN + L

(D)
ACAI, i.e., the sum of Eqs. (2) and (5).

3) Backward Propagation and Model Update: The dis-
criminator is first updated to minimize the multi-task dis-
crimination loss L

(D)
MT as θ(D) ← θ(D) − η∇θ(D)L

(D)
MT. The

TTS model is then updated to fool the updated discriminator
by minimizing L

(G)
MT = L

(G)
Total + λACAI∥C(DS(ỹ))∥22 as

θ(G) ← θ(G) − η∇θ(G)L
(G)
MT. Note that the speaker encoder

is not updated because we focus on the effect of adversarial
training only, not the fine-tuning of the encoder.

IV. EXPERIMENTS

A. Experimental Conditions

For training a speaker encoder, we used the Corpus of
Spontaneous Japanese (CSJ) [39] containing 660 hours of
speech data from 1,417 Japanese speakers (947 men and 470
women). The CSJ speech data were resampled to 16 kHz, and
the frame shift was set to 10 ms. For training, validating, and
evaluating a multi-speaker neural TTS model, we used the
“parallel100” subset of the Japanese Versatile Speech (JVS)
corpus [9]. The subset contains 22 hours of speech data from

100 Japanese speakers (49 men and 51 women; 100 sentences
per speaker). The ratio for each of training, validation, and test
data was 0.8, 0.1, and 0.1, respectively. Referring to Udagawa
et al.’s study [40], we regarded the following four speakers:
“jvs078,” “jvs060,” ”jvs005,” and “jvs010” as unseen speakers
during the training. The JVS speech data were resampled to
22.05 kHz to match the settings of neural vocoding, and the
frame shift was set to 12 ms.

We used the open source implementation of FastSpeech
2 [32] published by Wataru-Nakata3 for building our TTS
model. The TTS model predicted 80-dimensional mel-
spectrogram from Japanese phonemes with the aid of the
variance adaptors that predicted the F0 and energy of syn-
thetic speech. The F0 was estimated using the WORLD
vocoder [41], [42]. In the FastSpeech 2 training, we used the
Adam optimizer [43] with 4,000 Warmup [44] steps, initial
learning rate of 0.0625, batch size of 8, and 30,000 training
steps.

The DNN architecture architecture of a speaker encoder
was the same as that used in Jia et al.’s method [11].
The dimensionality of speaker embeddings was 256. In the
speaker-encoder training, we used the Adam optimizer with a
learning rate of 0.0001, batch size of 8, and 1,000,000 training
step.

Our multi-task discriminator had a structure of its DNN
architecture similar to that of the JCU discriminator in
GANSpeech [31]. Specifically, it consists a stack of 1D
convolutional (Conv1D) layers with the parameters of con-
volution operations Conv1D(c, k, s), where c, k, and s de-
note the number of output channels, kernel size, and stride
width, respectively. The activation functions for hidden and
output layers were leaky ReLU [45] and sigmoid, respec-
tively. The DS(·) had three Conv1D layers: Conv1D(64, 3, 1),
Conv1D(128, 5, 2), and Conv1D(512, 5, 2). The other sub-
modules, DC(·), DU(·), and C(·), were all consisted of
two Conv1D layers: Conv1D(128, 5, 2) and Conv1D(1, 3, 1),
except for conditioning by speaker embedding in DC(·).

The neural vocoder for synthesizing speech waveform was
the “generator universal model” of HiFi-GAN [46] included
in the FastSpeech 2 repository published by ming0244. We
did not finetune the HiFi-GAN on Japanese speech data.

B. Subjective Evaluations

We evaluated the performance of our algorithm on two TTS
tasks: 1) TTS for seen speakers and 2) voice cloning for un-
seen speakers. We compared the following three algorithms:

1) FS2: Minimizing L
(G)
FS2 (Eq. (1)) only [32]

2) GAN: Minimizing L
(G)
Total = L

(G)
FS2 +L

(G)
GAN + λFML

(G)
FM

(i.e., the GANSpeech algorithm [31])
3) MT: Minimizing L

(G)
MT = L

(G)
Total+λACAI∥C(DS(ỹ))∥22

(i.e., the proposed algorithm)

3https://github.com/Wataru-Nakata/FastSpeech2-JSUT
4https://github.com/ming024/FastSpeech2/blob/master/hifigan/generator

universal.pth.tar.zip



TABLE I
SUBJECTIVE EVALUATION RESULTS WITH THEIR 95% CONFIDENCE

INTERVALS (TTS FOR SEEN SPEAKERS)

Algorithm Naturalness MOS Speaker similarity DMOS
FS2 3.18 ± 0.12 3.57 ± 0.12

GAN 3.52 ± 0.12 3.79 ± 0.12
MT 3.55 ± 0.12 3.87 ± 0.12

TABLE II
SUBJECTIVE EVALUATION RESULTS WITH THEIR 95% CONFIDENCE

INTERVALS (TTS FOR UNSEEN SPEAKERS)

Algorithm Naturalness MOS Speaker similarity DMOS
FS2 3.13 ± 0.12 2.38 ± 0.12

GAN 3.38 ± 0.12 2.40 ± 0.13
MT 3.50 ± 0.12 2.48 ± 0.12

We chose the hyperparameter λACAI = 1.0 empirically.
Speech samples used for the evaluation are available on
http://sython.org/demo/nakai22apsipa/demo.html.

1) TTS for Seen Speakers: We conducted the five-level
mean opinion score (MOS) and degradation MOS (DMOS)
tests to evaluate the naturalness and speaker similarity of
synthetic speech using the test data of 96 seen speakers,
respectively. In the DMOS test, natural speech uttered by
a speaker to be synthesized was used as the reference for
evaluating the similarity. For each test, we recruited 50
listeners who evaluated the quality of speech samples using
our crowdsourced subjective evaluation system. Each listener
evaluated 15 speech samples whose speakers were random-
ized.

Table I shows the evaluation results. From this table, we
observe that 1) “GAN” and “MT” significantly outperform
“FS2” and 2) “MT” achieves similar performance to “GAN.”
These results demonstrate that our multi-task adversarial train-
ing algorithm can keep the performance of the conventional
GANSpeech algorithm for TTS of seen speakers.

2) Voice Cloning for Unseen Speakers: We also evaluated
the performance of our algorithm for voice cloning of unseen
speakers and conducted the MOS and DMOS tests. The
conditions of the evaluation, i.e., the numbers of listeners and
speech samples, were the same as those in Section IV-B1. The
speaker embeddings of the unseen speakers were estimated by
utterance-wise.

Table II shows the evaluation results. From this table, we
confirm that “MT” achieves the highest MOS and DMOS
values among the three algorithms, which suggests that our
multi-task adversarial training algorithm can mitigate the
degradation of speech naturalness in the voice cloning task
and successfully improve the naturalness better than the
conventional GANSpeech algorithm. However, we observe
that there is a still large gap between the DMOS values of
synthetic speech in seen speakers’ TTS (the third column of
Table I) and those of cloned speech. This result indicates that
the ACAI-derived regularization is insufficient to diversify the
variation of speakers and another approach such as speaker
generation [47] may be necessary for the absolute improve-

ment of speaker similarity.

V. CONCLUSION

We proposed a GAN-based multi-task training algorithm
for a multi-speaker neural TTS model that can synthesize
high-quality voices of unseen speakers. Our algorithm alter-
natively trains two DNNs: multi-task discriminator and multi-
speaker neural TTS model. The discriminator aims to not
only distinguish between natural and synthetic speech but
also verify the speaker of input speech is existent or non-
existent (i.e., newly generated by interpolating seen speakers’
embedding vectors). Meanwhile, the TTS model tries to fool
the discriminator by minimizing the weighted sum of the
speech reconstruction loss and adversarial loss for fooling
the discriminator. Experimental evaluation showed that our
algorithm improved the quality of synthetic speech better than
a conventional algorithm used in the training of GANSpeech.
In future work, we will investigate how to improve the speaker
similarity of synthetic speech in voice cloning and conduct
TTS experiments for other languages.
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