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1 Introduction

Text-to-speech (TTS) technology aims to gener-
ate human-like speech including both linguistic and
para-linguistic information. Due to the fast devel-
opment of deep learning models, synthetic speech is
already well understandable from a linguistic per-
spective [1]. The next challenge is how to reproduce
and control a diverse variety of para-linguistic in-
formation, such as emotions, in natural speech. In
this paper, we aim to develop emotion-controllable
TTS that can express diverse emotions. The con-
ventional approaches to controlling emotion in syn-
thetic speech can be separated into 2 categories:
coarse-grained and Fine-grained emotion control.
The “coarse-grained” emotion-control models condi-
tion TTS models with emotion labels [2, 3, 4]. And
the “fine-grained” emotion-control models condition
TTS models with emotion strength or weight [5, 6,
7]. However, these “fine-grained” emotion control
models cannot control how emotion intensity is rep-
resented in speech. The prosodic features, such as
energy or pitch, that represented emotion intensity
cannot be controlled by these “fine-grained” emo-
tion control models. The prosodic features vary
from utterance to utterance even when the emo-
tion strength is the same. In another word, cur-
rent “fine-grained” emotion controlling models are
not “fine” enough. Another method conditions a
TTS model on prosodic features [8], but it cannot
control emotion. To summarize, the conventional
approaches can not express both inter-category and
intro-category variation of speech emotion with at
coarse-grained (i.e., emotion-level) and fine-grained
level (i.e., prosodic features) at the same time.
In this paper, we propose an emotion-controllable

TTS model that enables both coarse-grained and
fine-grained emotion control. To achieve coarse-
grained emotion control, we introduce a speech emo-
tion recognizer (SER) that estimates the speech
emotion soft-label, which used for coarse-grained
emotion control in inference stage, from the
utterance-level prosodic features. To achieve fine-
grained emotion control, we also introduce a
prosodic feature generator (PFG) that estimates
the utterance-level prosodic features, which used for
fine-grained emotion control in inference stage, from
the estimated speech emotion soft-label.
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2 Related Work

The emotion information in the emotional TTS
model can be represented in various ways, such as
emotion labels, prosodic features and implicitly hid-
den states. The approaches to representing emotion
as hidden states include variational autoencoder,
etc [9, 10, 11]. Either of them embedded emotion
into a hidden state vector trained in an unsuper-
vised way. However, such models are incapability to
controlling the synthetic speech by a specific emo-
tion.
The approaches to representing emotion as emo-

tion labels include assigning a one-hot emotion la-
bel manually to each speech (i.e., using labeled
dataset) [2], elaborately selecting centroid weight
of style tokens trained by labeled emotional speech
dataset as hard emotion label [3], and using emotion
soft-label obtained by an emotion interpolation ap-
proach [5]. These researches can control synthetic
speech at a coarse-grained level; however, neither
can control speech emotion at a fine-grained level
under given emotion labels.
The research such as [8] can properly control

speech in fine-grained level by adjusting 5 prosodic
features obtained from recurrent neural network
(RNN) based prosody encoder [12], and Fast-
Speech2 [13] also controls speech by predicted pitch
and energy. However, neither can control the coarse-
grained emotion of synthetic speech.
To control speech emotion at both coarse-grained

and fine-grained levels, research [6, 7] conditions
speech on discrete emotion category and contin-
uous emotion-strength scalar value or phoneme-
level emotion strength. However, the definitions of
“fine-grained” emotion control in these papers are
sentence-level or phoneme-level emotion strength
which is not “fine” enough compared with prosodic
features controlling.

3 Proposed Method

3.1 SER and PFG Models

The SER and PFG models are used to achieve
coarse-grained and fine-grained emotion control of
speech, respectively. In training, the SER model es-
timates an emotion soft-label for coarse-grained con-
trolling from textual and prosodic features of input
text and speech, and the PFG model estimates the
prosodic features for fine-grained controlling from
the emotion soft-label.
To extract prosodic features, we use the means
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Fig. 1 Architecture of SER and PFG. “MLP” in
this figure denotes multi-layer perceptron.
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Fig. 2 Overall architecture of proposed TTS.

and standard deviations of pitch, energy, and har-
monics of speech as the prosodic features, which are
originally proposed in [14] and believed strongly re-
lated to speech emotion. In addition to these 6 fea-
tures, we also introduce 2 new features, the ranges
of energy and pitch for better prosody controlling.
In summary, 8 prosodic features are extracted. To
achieve better performance of the SER model, we
use Term Frequency-Inverse Document Frequency
(TF-IDF) [15] as the textual features since it im-
proves the performance of multi-modal speech emo-
tion classification [14].

Speech Emotion Recognizer (SER) We con-
struct a DNN-based SER model that predicts an
emotion posterior probability (i.e., emotion soft-
label) from given emotional features including tex-
tual and prosodic information. The predicted emo-
tion soft-label can be used as features for realizing
emotion-level control of synthetic speech in the emo-
tional TTS model.

Prosodic Feature Generator (PFG) We con-
struct a DNN-based PFG model that estimates
prosodic features from the soft-label, obtained from
the SER model. Compared with the conventional
approaches [8] that generate prosodic features from
the text input, our PFG model is different, since 1)
it generates utterance-level prosodic features from
emotion and 2) the emotion here is represented by
a soft-label, instead of a commonly used hard-label.
The SER and PFG models, as shown in Fig. 1

are jointly pre-trained using a corpus consisting of
text, emotional speech, and corresponding emotion
labels.

3.2 Emotion-controllable TTS Model

3.2.1 Model Structure

The backbone TTS model is inspired by
Tacotron2 [1] consisting of the encoder, decoder, at-
tention, prenet, and postnet. The proposed SER
and PFG models are embedded as input of decoder
in the Tacotron2 model, shown in Fig. 2. In de-

tail, the prosodic features, obtained from the PFG
model, are concatenated with the output of the
Tacotron2 attention and then fed to the Tacotron2
decoder.

3.2.2 Training

The emotion-controllable TTS model is trained
on emotional speech corpus without emotion labels.
The top of Fig. 2 shows this training. Since typi-
cal corpora do not have an emotion label, we follow
the previous work [16] and introduce an unsuper-
vised way using the pre-trained SER model. We
feed the textual features and prosodic features of
the training data into the pre-trained SER model
and obtain an emotion soft-label. From the emotion
soft-label, the prosodic features are back-estimated
and used for conditioning the TTS model. The ob-
jective function LTTS to be minimized for training
is LTTS = LTacotron2 + LPFG, where LTacotron2 is
the objective function described in the Tacotron2’s
paper [1]. Since we use unlabeled emotional speech
dataset, the SER model is frozen during the TTS
model training.

3.2.3 Inference

In the synthesis process, we have two options for
controlling the emotion of synthetic speech: the
emotion soft-label and prosodic features. The bot-
tom of Fig. 2 shows this inference. For the former
option, the emotion soft-label is manually assigned
and prosodic features are then predicted by the PFG
model and fed into the TTS model. For the lat-
ter option, the back-estimated prosodic features can
be fine-adjusted manually by assigned prosodic fea-
ture biases. The fine-adjusted features are then fed
into the Tacotron2 decoder to estimate mel spectro-
grams, which are used for generating waveform by
applying the Parallel WaveGAN model [17].

4 Experiment Evaluation

4.1 Experimental Setup

4.1.1 Data

We used the IEMOCAP corpus [18] for pre-
training SER and PFG models and the Blizzard2013
corpus [19] for training TTS model. The IEMOCAP
corpus has 12 hours of transcript and speech, record-
ing from emotional dialogues of five males and five
females in both acting and improvising way. We
randomly split it into 80 % and 20 % for training
and testing the SER and PFG models. The Bliz-
zard2013 corpus contains emotion-unlabelled emo-
tional speech uttered by a single English speaker.
We filtered out only emotional speech part for train-
ing and testing by the following approach. First, we
selected character-speaking sentences surrounded by
a single or double quotation mark. Then, we fil-
tered out weak-emotional speech which is estimated
with more than 0.8 score by the SER model in each
category. Finally, we required 3 human annotators
to randomly listen to 100 speech in each emotional



category of filtered data and removed perceptually
non-emotional categories. As a result we obtained
28 hours of neutral and angry speech and followed
by splitting into 80 % and 20 % for training and
testing the TTS model.

4.1.2 Model Parameter and Features

As in the TTS model, mel-spectrograms were
computed through a short-time Fourier transform
(STFT) using a 46 ms frame size, 11.5 ms frame
hop, and a Hann window function. The mel scale
was transformed using an 80 channel mel-filterbank
spanning from 80 Hz to 7600 Hz. As in neural
vocoder, we applied the Parallel WaveGAN model
which is pre-trained on LJSpeech dataset [20].
Textual features were extracted by the TF-

IDF [15] approach for each word in the Blizzard2013
corpus, and prosodic features were extracted as the
mean and standard deviation (std.) of pitch, en-
ergy, and harmonics [14] and also the range of en-
ergy and pitch in utterance-level. The minimum
and maximum values of the prosodic were normal-
ized to [0, 1], respectively. The PFGmodel predicted
8-dimensional prosodic features from 2-dimensional
emotion posterior probability.
The SER and PFG models were firstly pre-trained

on the IEMOCAP data and then were used as ini-
tial parameters in the following TTS model training
on the Blizzard2013 corpus. The parameters of the
SER model and PFG model were frozen and fine-
tuned, respectively during the training.

4.2 Control by Emotion Soft-label

To evaluate coarse-grained emotion control by
emotion labels, we conducted a listening test for
emotion distinctness. We generated 130 angry and
130 neutral speech from randomly selected 130 test
sentences. Each of 50 listeners evaluated 20 angry–
neutral paired speech and select an angry one for
each. The test was done in our evaluation system
on the Amazon Mechanical Turk [21].
The result shows that the accuracy of perceptual

emotion reached 66 %. Although our result is in-
ferior compared with the conventional research [3]
showing higher than 80 % accuracy, the emotion of
synthetic speech by our method is still distinguish-
able by only using weak-emotional and unlabeled
speech data.

4.3 Objective Evaluation

In the objective evaluation, we generated 1120 au-
dio totally multiplied by 10 randomly selected test
sentences, 2 emotions, 8 prosodic features mentioned
in Section 3.1, and 7 prosodic feature biases ranged
[−0.3, 0.3] by 0.1 step size. Under the given neu-
tral or angry label, we biased 8-dimensional prosodic
features which were back-estimated from the emo-
tion label for fine-grained controlling. We extracted
the prosodic features of synthetic speech and eval-
uated the relation between the controlling bias and
observed prosodic features.
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Fig. 3 Controlling vs. observed prosodic features
(angry). The dashed lines are linear approximation.
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Fig. 4 Controlling vs. observed prosodic features
(neutral). The dashed lines are linear approxima-
tion.

Figures 3 and 4 show the relation, where the la-
bels 0.0 and ±0.3 of the horizontal axis indicate no
modification and max biases in negative and positive
sides, respectively. Table 1 lists their Pearson corre-
lation coefficient (PCC) for quantitative evaluation.
From the results, it is observed that 1) pitch-related
features (i.e., pitch mean, std., and range), energy
mean and harmonics std. show medium or strong re-
lation between controlling bias and observed value
(PCC > 0.3 and p-value < 0.05), 2) according to
the PCC values of energy std. (0.27), Energy range
(0.29) and pitch range (0.27), these prosodic fea-
tures are nearly medium relation, and 3) harmon-
ics std. is not controlled at all. Therefore, we can
say that our system can accurately control most of
proposed prosodic features in the synthesized emo-
tional speech. Compared with the conventional re-
search [8] which shows better linear relation by only
control prosodic features, we argue that our model
satisfied part of linear controllability in exchange



Table 1 PCC of controlling and observed prosodic
features. Underlined prosodic features show
medium or strong correlation (PCC > 0.3 and p-
value < 0.05)

Prosody PCC p-value
Energy mean 0.56 3.9e-07
Energy std. 0.27 0.56
Energy range 0.29 0.01

Harmonic mean -0.02 0.81
Harmonic std. 0.35 0.002
Pitch mean 0.58 9.2e-08
Pitch std. 0.41 0.007
Pitch range 0.27 0.5

Fig. 5 MOS measured over 8 controlling features.

for emotion controlling ability. We will furthermore
investigate on the approach to improve the perfor-
mance in future work1

4.4 Subjective Evaluation

To evaluate the quality of synthetic speech by
comparing with conventional approach, we syn-
thesized 51 types of speech audio by our method
with two emotion labels (neutral and angry) and
the conventional prosodic feature controlling ap-
proach [8] for each of 200 listeners from 8 prosodic
features, 3 biases (−0.3, 0, 0.3) and randomly se-
lected 10 test sentences. We carried out mean opin-
ion score (MOS) tests on naturalness of emotion-
controlled synthetic speech. Figure 5 shows the en-
couraging result that despite the controllability in
both emotional-level and prosodic-feature level, our
model shows equal performance (MOS = 3.9) syn-
thetic speech quality with the conventional research
that can only control speech in prosodic-feature.

5 Conclusion

In this paper, we proposed a method that can
achieve coarse-grained and fine-grained control of
emotional text-to-speech (TTS) model by using
emotion soft-label and prosodic features. Our model

1sample audio:sample audio link

shows a slight inferior when compared with conven-
tional approach, considering weak-emotional train-
ing dataset and doubled controlling ability, the re-
sult is still encouraging.
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