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1 Introduction

Text-to-speech (TTS) models aim to synthesize
human-like speech including linguistic and paralin-
guistic information. Current TTS models [1, 2]
can synthesize understandable speech from a lin-
guistic perspective. On the other hand, synthesiz-
ing human-like speech with diverse paralinguistic in-
formation, such as emotion and prominence, is still
not an easy task. Conventional emotion-controllable
TTS studies enable emotion controllability by con-
ditioning on explicit emotion labels [3, 4] or im-
plicit emotion embeddings [5, 6]. To enable more di-
verse controllability, subsequent studies conditioned
on emotion strength which is usually obtained by
an interpolation method [7] or a ranking function at
utterance- or phoneme-level [3, 8].
However, emotion strength is a limited concept

to only emotional speech (not for normal speech),
and it refers to the intensity of only emotion (not
for others, like intention), which limits its broader
use. In addition, predicting emotion strength of
speech requires specific emotional datasets [3], which
also limits its application. On the other side, word-
level prominence is a more general concept for emo-
tional and normal speech. It refers to the percep-
tual quantity of standing out from other words [9],
which can be calculated by speech processing tech-
niques [10] without training on specific emotional
datasets. Previous controllable TTS model [11]
conditions their TTS model on word/phoneme-level
prominence (i.e., emphasis) to enable diverse syn-
thesized speech. However, such models cannot con-
trol emotion.
In this paper, we propose a two-stage emotion-

controllable TTS model that we can condition on
emotion soft labels and fine-condition on word-
level prominence, which conventional models can-
not. Our proposed model extends the Tacotron2
model with a speech emotion recognizer (SER) and
a prominence predictor (PP) to enable this dual con-
trollability. In the first stage, we condition on emo-
tion soft labels predicted by the SER. In the second
stage, we fine-condition on the prominence predicted
by the PP model. The experiments achieved 1) 51%
emotion-distinguishable accuracy, and 2) 0.95 linear
controllability on prominence.
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2 Proposed method

2.1 SER model

The SER model estimates emotion soft labels
which are used for the first stage of control. It takes
multi-modal features as input because of better per-
formance than single features [12]. The multi-modal
features consist of prosodic factors, prominence, and
textual features.
Utterance-level prosodic factors extraction

We extract pitch and energy contours of speech at
the frame level and calculate their means, stan-
dard deviations (SD), and range as utterance-level
prosodic factors (6-dimension) because they are ex-
pected to relate to speech emotion [12]. The pitch
contour is predicted using the pYIN algorithm [13],
and the energy contour is calculated by the root-
mean-square value of the magnitude of each frame.

Word-level prominence extraction We ex-
tract word-level prominence by using the lines
of maximum amplitude (LoMA) in the continu-
ous wavelet transform (CWT) of a sum of sig-
nal contours of pitch, energy, and duration with
weights [10]. The CWT is expected to approximate
human processing of a complex signal relevant to
prominence by resembling the perceptual hierarchi-
cal structures (phoneme, syllable, word) related to
prosody. This ability is more difficult to achieve
with traditional spectrograms. The LoMA [14]
are lines that can identify and quantify word-level
prominence by connecting nearby peaks in the CWT
of the signal at different scales. The strength of
the line for each word is the word-level prominence
which is determined by the cumulative sum of scale
values of the line with weights, shown as follows:

xprm = Ws(a0, ti0,0) + . . .+

log(j + 1)a−j/2Ws(a0a
j , tij ,j),

(1)

where xprm is word-level prominence, a0 denotes the
finest scale in CWT, a defines the spacing between
chosen scales, j denotes sale, tij ,j is a time point
where the local maxima occurred in the a0a

j scale.
Ws(a0a

j , tij ,j) denotes the CWT amplitude in tij ,j
time point at a0a

j level scale.
Word-level textual feature extractionWe ex-

tract word-level textual features by applying the
fastText [15], a word-level text embedding model,
to a text embedding.
We then concatenate prosodic factors xpsd, promi-

nence xprm, and text embedding xwrd to multi-
modal features xmul as the SER input, shown as
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Fig. 1 The proposed emotion-controllable model

follows:

xmul = Concatwrd(xpsd,xprm,xwrd). (2)

where Concatwrd is concatenation at word-level.
The SER model architecture The SER model

is a 2-layer LSTM model followed by a softmax out-

put layer. It estimates emotion soft labels p
(1)
emo,

where superscript 1 indicates that it is used for the
first stage of control. The emotion soft labels are the
posterior probabilities for predicting the emotion la-
bels yemo, conditional on multi-modal features xmul:

p(1)
emo = SER(xmul) = P (yemo|xmul). (3)

The SER architecture is shown on the left below
side of Fig. 1. It is trained by minimizing the cross-
entropy loss LSER between the groud-truth emotion
labels and estimated emotion soft labels:

LSER = −
N∑
i=1

C∑
c=1

yi,c log(pemoi,c), (4)

where yi,c is an emotion label indicator, assigned 0
or 1, indicating whether the i-th utterance belongs
to the c-th emotion (1) or not (0). N and C are the
total numbers of utterances and emotion categories,
respectively. pemoi,c is the estimated emotion soft
label of the i-th utterance for the c-th emotion.

2.2 PP model

The word-level prominence predictor PPprm pre-
dicts basic-conditioning prominence x̂prm from a
concatenation of text embedding xwrd and emotion

soft labels p
(1)
emo:

x̂prm = PPprm(xwrd,p
(1)
emo), (5)

where p
(1)
emo is also the SER output in training and

manually assigned in inference.
The PPprm also consists of a 2-layer LSTM net-

work followed by an FC layer and a sigmoid layer in
sequence, as shown in Fig. 1.
The SER and PP models are jointly trained by

minimizing the sum of the SER and PP losses
L(SER+PP) on an emotion-labeled dataset. The ob-
jective function is:

L(SER+PP) = LSER + LPP. (6)

where LPP indicates the L2 loss of and predicted
and ground truth prominence.

2.3 Emotion-controllable TTS Model

The emotion-controllable TTS model enables two-
stage control by extending the baseline Tacotron2

model with the concatenated SER and PP mod-
els, as shown in Fig. 1. The SER model takes
multi-modal features as input and outputs emo-
tion soft labels, which are fed into the PP model
along with text embedding. The PP model outputs
basic-conditioning prosodic factors and prominence,
which are then fed into the TTS decoder along with
phoneme embedding from the TTS encoder.
We concatenate basic-conditioning prominence

and phoneme embedding by alignment with the En-
glish grapheme-to-phoneme conversion algorithm 1.
The proposed TTS model emoTTS is conditioned
on the concatenated embeddings ĉcon to synthesize
speech yspeech:

yspeech = emoTTS(ĉcon), (7)

where

ĉcon = Concatphn(ĉprm,xphn), (8)

where Concatphn is a concatenation of prominence
ĉprm, and phoneme embedding xphn.
The conditioning prominence ĉprm comprises two

parts: basic-conditioning prominence x̂prm and fine-
conditioning prominence (i.e., prominence bias or

fine-conditioning bias) b
(2)
prm, shown in Eq. (9).

ĉprm = PPprm(xwrd,p
(1)
emo) + b(2)prm

= x̂prm + b(2)prm,
(9)

where PPprm is the word-level prominence predictor.
According to Eq. (7) and Eq. (9), the proposed

TTS model enables the inter-emotion and intra-
emotion control by converting emotion soft labels

p
(1)
emo and fine-conditioning prominence b

(2)
prm to ĉprm.

The proposed TTS model is optimized by mini-
mizing the additive loss Lemo TTS of LTacotron2 and
LPP:

Lemo TTS = LTacotron2 + LPP. (10)

In inference, the proposed two-stage control TTS
model can synthesize speech in the following ways:

1. Enabling only the first stage of control. Given
emotion soft labels, the proposed model can
synthesize speech with a specified emotion.

2. Enabling both the first and second stages of
controls. Given emotion soft labels and fine-
conditioning prominence, the proposed model
can synthesize specified emotional speech with
slightly changed prominence.

3 Experimental setup

3.1 Data

We used the IEMOCAP corpus [16] for pre-
training SER and PP models and the Blizzard2013
corpus [17] for training the proposed TTS model.
The IEMOCAP corpus has 12 hours of transcript
and speech, recording from emotional dialogues of
five males and five females in both acting and im-
provising way. We randomly split it into 80 %

1The English grapheme-to-phoneme conversion pack-
age:link

https://pypi.org/project/g2p-en/#description


and 20 % for training and testing the SER and PP
models. The Blizzard2013 corpus contains emotion-
unlabelled emotional speech uttered by a single En-
glish speaker. We filtered out only emotional speech
part for training and testing by the following ap-
proach. First, we selected character-speaking sen-
tences surrounded by a single or double quotation
mark. Then, we filtered out weak-emotional speech
which is estimated with more than 0.8 score by the
SER model in each category. Finally, we required 3
human annotators to randomly listen to 100 speech
in each emotional category of filtered data and re-
moved perceptually non-emotional categories. As a
result we obtained 28 hours of neutral and angry
speech and followed by splitting into 80 % and 20 %
for training and testing the TTS model.

3.2 Model parameter and features

The SER model consisted of a 3-layer LSTM net-
work with 128 hidden units and a 128× 3 fully con-
nected (FC) layer, followed by a softmax activation.
The PP model included a 2-layer LSTM network
with 128 hidden units and a 128 × 1 FC layer fol-
lowed by a sigmoid activation function. It took a
303-dimensional joint vector as input and output a
1-dimensional prominence.
The backbone Tacotron2 consisted of an encoder

network that converted phoneme embedding into a
hidden text representation and a decoder network
that predicted mel-spectrograms from hidden text
and prominence with attention. Specifically, the
encoder network consisted of 3-layer 1-dimensional
convolutions with 512 filters and a 5 × 1 window
size. A phoneme embedding represented by a 512-
dimensional vector was passed through the encoder
network whose output was a hidden text represen-
tation.

4 Evaluation

4.1 Controllability of emotion soft labels
(first stage of control)

We first evaluated the emotion controllability of
our proposed model when conditioning on emotion
soft labels during the first stage (inter-emotion) of
control. To obtain the perceived emotion of syn-
thesized speech, we conducted a preference test in
which each participant was required to choose an-
gry, neutral, and sad speech, respectively, from a
set of three synthesized speech with angry, neu-
tral, and sad emotions. We synthesized 10 utter-
ances for each emotion (angry, neutral, and sad)
as test speech from randomly selected sentences in
the BC2013 dataset by conditioning corresponding
emotion soft labels to 1.0. We applied the emotion
soft label to 1.0 for better representativeness [18].
This test was conducted on the Amazon Mechani-
cal Turk with 50 participants and 10 sets of speech
for each participant. The performance of emotion
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Fig. 2 Correlation between fine-conditioning and
observed biases when fine-conditioning on the
prominence of NOUN, VERB, ADJ, and ADV
words for three emotions

controllability was evaluated by the accuracy, preci-
sion, recall, and F1-score which indicates the distin-
guishability for each emotion category. The results
demonstrated that the accuracy, precision, recall,
and F1-score were 51%, 52%, 50%, and 51% on av-
erage of three emotions. Specifically, the accuracy
of angry speech was 60% which was relatively higher
than other emotions.

4.2 Linear controllability of word-level
prominence (second stage of control)

We evaluated the linear controllability of our pro-
posed model by fine-conditioning on prominence
during the second stage (intra-emotion) of con-
trol. We defined a linear controllability score us-
ing the Pearson Correlation Coefficient (PCC) be-
tween the fine-conditioning biases and measured bi-
ases for prominence. This can be represented by
PCC(bprm, b

′
prm), where bprm is fine-conditioning

biases and b′prm is measured biases indicating the
difference in prominence between the synthesized
speech with fine-conditioning bias and without bias
(fine-conditioning bias = 0).
In the experiment, we found that word-level

prominence was distributed differently depending on
the part of speech in the training dataset where
the prominence of NOUN, VERB, ADJ, and ADV
words was distributed close to a normal distribu-
tion. Therefore, we only experiment on the NOUN,
VERB, ADJ, and ADV words. To synthesize the
evaluation speech, we also input 50 sentences se-
lected from the BC2013 dataset, and for each sen-
tence, we fine-conditioned on the prominence of
NOUN, VERB, ADJ, and ADV words, respectively,
with seven biases for each, ranging from −0.3 to 0.3
with a 0.1 step, for angry (angry = 1.0), neutral
(neutral = 1.0), and sad emotion (sad = 1.0). In
total, we synthesized 2, 100 speech samples.
As the result, the average PCC(bprm, b

′
prm) score

of angry (0.93), neutral (0.97), sad (0.96), and over-
all (0.95) emotions showed strong linear controllabil-
ity on the prominence of the NOUN, VERB, ADJ,
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Fig. 3 Prominence contours of an utterance syn-
thesized by conditioning on the angry, neutral, and
sad emotions and fine-conditioning prominence on
NOUN, VERB, ADJ, and ADV words with three
biases (−0.3, 0, and 0.3) for each emotion. The
sample sentence is “They forcefully keep them at a
black hotel”. The NOUN, VERB, ADJ, and ADV
words correspond to “hotel”, “keep”, “black”, and
“forcefully”, respectively.

and ADV words with p-value < 0.05. We also visu-
alized the correlation between bprm and b′prm on the
three emotions, as shown in Fig. 2.
We also visualized the prominence contours of ut-

terances, synthesized by conditioning on the differ-
ent emotions and prominence, as shown in Fig. 3.
From the result, the prominence of fine-conditioned
words increased (or decreased) when the condition-
ing bias increased (or decreased).

4.3 Subjective evaluation

We evaluated the quality of speech by a mean
opinion score (MOS) test on 360 synthesized speech
where each of the 10 sentences had 36 variations
(3 emotions × 4 parts of speech × 3 biases). We
conducted the test on the Amazon Mechanical Turk
with 50 participants, each of whom was given 36
speech samples and required to choose speech qual-
ity for each speech in five stages (1: very bad, 5: very
good). The result shows the MOS = 3.9, which is
comparable to the method that can only condition
prominence.

5 Conclusion

We proposed a two-stage emotion-controllable
text-to-speech (TTS) model that can condition
on inter-emotion (e.g., angry) in the first stage
and fine-condition on intra-emotion with word-level
prominence in the second stage of control. Due
to the two-stage design, our model enables inter-
emotion controllability and increases intra-emotion
diversity. The results show that we can 1) con-
dition the proposed model on emotion and syn-

thesize adequately emotion-distinguishable speech
(emotion-distinguishable score = 51%), 2) linearly
fine-condition on the prominence of NOUN, VERB,
ADJ, and ADV words for the angry, neutral and
sad emotions, and finally 3) synthesize speech with
comparable audio quality (MOS = 3.9) to that of
the conventional methods. In future, we plan to en-
able more emotion controllability and their better
combination with prominence.
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