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1 Introduction
Cross-lingual text-to-speech (TTS) synthesis

refers to a task that requires the TTS model to syn-

thesize a source language’s speech for a target lan-

guage’s speaker. Previous work about cross-lingual

TTS usually trains a multilingual multi-speaker

TTS model on multiple monolingual datasets by

conditioning the TTS model on speaker and lan-

guage representations called speaker and language

embeddings, respectively [1, 2]. One of the draw-

backs of such a method is that it requires a large

amount of speech data with transcriptions for speak-

ers of the target language. However, in practice not

necessarily all speakers of the target language have

such an amount of data. In such a case speaker

adaptation can be used, which refers to a tech-

nology that can adapt the TTS model to a new

speaker whose data is not included in the train-

ing set and enable the TTS model to synthesize the

target speaker’s speech at a relatively lower cost.

Existing monolingual speaker adaptation methods

often use a small amount of the target speaker’s

speech data to fine-tune a pretrained multi-speaker

TTS model [3]. However, since the TTS model of

the source language never sees the target language’s

data during the training process, this method is not

applicable for cross-lingual speakers, i.e., speakers of

different languages.

In this paper, we propose a cross-lingual speaker

adaptation method using domain adaptation and

speaker consistency loss for TTS synthesis. The ba-

sic idea of our work is inspired by Jia et al. [4],

a monolingual speaker adaptation method. It only

needs multilingual data without transcriptions to

train a speaker verification model and the source

language’s data to train a TTS model. Also, the pro-

posed method can fine-tune the source language’s

TTS model on the target language’s data by us-

ing the speaker embeddings of the target speakers,

which only needs up to 3 minutes of speech data

of each speaker. Inspired by our previous work

[1, 2], the proposed method first trains a language-

independent speaker verification model on multilin-

gual data by using domain adaptation. Then the

speaker embeddings for source language’s speak-

ers are used to train a monolingual multi-speaker

TTS model. To adapt the TTS model to cross-

lingual target speakers, the proposed method fine-
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Fig. 1 Architecture of the speaker encoder. The

adversarial language classifier is not used in the con-

ventional method.

tunes the TTS model under a speaker consistency

loss that maximizes the cosine similarity between

speaker embeddings of the same speaker generated

from the target language’s natural speech and the

source language’s synthesized speech. Experimental

results demonstrated that (1) the proposed method

can synthesize speech of the source language of

a cross-lingual speaker with higher speech natu-

ralness than the conventional method; (2) using

speaker consistency loss with a language-dependent

speaker verification model will instead causing per-

formance degradation. The audio samples of this

work are publicated on our project page: https:

//aria-k-alethia.github.io/2021clsa/.

2 Baseline Method

In this section we introduce a baseline method

for cross-lingual speaker adaptation based on previ-

ous work [4] used in the experiments. The baseline

method contains two components: (1) a speaker en-

coder based on multilingual speaker verification, (2)

a monolingual multi-speaker TTS model based on

Tacotron2.

2.1 Speaker Encoder based on Speaker Ver-

ification

Recent work has shown that speaker verifica-

tion/recognition is an appropriate pretext task to

learn speaker embeddings for multi-speaker TTS

[1, 5]. This is because learning a representative

and distinct speaker embedding for each speaker is

a common requirement for speaker verification and

multi-speaker TTS. Thus in this stage we train the

speaker encoder based on speaker verification using

multilingual data.

The general architecture of the speaker encoder is
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Fig. 2 Diagram of the proposed TTS model and

the speaker consistency loss.

illustrated in Figure 1. Basically it is similar to the

architecture mentioned in Jia et al. [4]. The only

difference here is that we use a more powerful model

called ResCNN [6] as the speaker encoder’s imple-

mentation instead of simple long short-term mem-

ory to encode the mel-spectrograms to cope with the

complexity of multilingual data. We use generalized

end-to-end (GE2E) loss Lge2e [7] as the speaker ver-

ification loss.

2.2 Multi-speaker Tacotron

After we get the trained speaker encoder, we train

a monolingual multi-speaker TTS model by condi-

tioning a Tacotron2-based TTS model [8] on the

speaker embedding generated by the speaker en-

coder (Figure 2). Specifically, following previous

work [4] we concatenate the speaker embedding to

the output states of the text encoder and use this

as the input of the attention module to let the de-

coder attend over them. In this stage we only use

the source language’s data and keep the parameters

of the speaker encoder fixed.

Formally, denote the mel-spectrogram of the jth

utterance of the ith speaker as xij , the embedding

generated by speaker encoder fs(·) is defined as:

eij = fs(xij). Denote the Tacotron2 model and the

text sequence of the mel-spectrogram xij as ft(·)
and yij , respectively, the loss function of the TTS

model is defined as the L1 distance between the nat-

ural mel-spectrogram xij and the synthesized one

x̃ij = ft(yij , eij): Ltts =
∑

i,j |x̃ij − xij |. After

training, to adapt to a new speaker, we first average

speaker embeddings generated from the speaker’s k

utterances and use the averaged speaker embedding

to synthesize the source language’s speech.

3 Proposed Method

In this section we describe the proposed method

by extending the baseline method described in Sec-

tion 2. The proposed method first trains a speaker

encoder based on speaker verification using GE2E

loss and domain adaptation to construct a language-

independent speaker space. To fine-tune the TTS

model on cross-lingual speech, the proposed method

then uses a speaker consistency loss to maximize the

cosine similarity between the speaker embeddings of

the natural and the same speaker’s synthesized mel-

spectrograms, which can benefit from the language-

independent speaker space learned by the domain

adaptation.

3.1 Language-independent Speaker Verifi-

cation based on Domain Adaptation

The baseline speaker verification method intro-

duced previously (Section 2.1) is suitable for mono-

lingual settings. However, when training the model

on multiple datasets of different languages, the

language-dependent speakers cause a domain shift

between the speakers of different languages [9].

This impedes the knowledge transferring from the

speaker encoder to the TTS model for cross-lingual

speakers. Therefore to make it possible to fine-tune

the TTS model on cross-lingual data, following our

previous work [1, 2] we use a domain adaptation al-

gorithm to eliminate the domain shift.

Specifically, we use domain adversarial neural net-

work (DANN) [10]. As illustrated in Figure 1, the

proposed method extends the baseline method by

adding an adversarial language classifier. During

training the classifier tries to learn the language la-

bel from the speaker embedding. Meanwhile, the

adversarial training forces the model to exclude in-

formation relating to language from the speaker

embedding, which finally makes the speaker en-

coder become language-independent. This is accom-

plished by a gradient reversal layer (GRL) to reverse

the gradient back-propagated from the classifier to

the speaker embedding.

Formally, denote the GRL operator, the adversar-

ial language classifier and the language label of xij

as △, fl(·) and lij , respectively, the loss of DANN is

defined as:

Lda =
∑
i,j

−lij log σ(fl(△eij))

− (1− li) log (1− σ(fl(△eij))),

(1)

where σ(·) is the sigmoid function. The final loss

function of the proposed speaker encoder is defined

as: Ls = Lge2e + Lda. This loss makes the speaker

space generated by the speaker encoder not only re-

flect the speaker characteristics but also not depend

on language.

3.2 Speaker Adaptation based on Consis-

tency Loss

As mentioned previously cross-lingual speech data

can not be used to fine-tune a monolingual TTS

model of source language directly. However, the

knowledge learned by the pretrained speaker en-

coder can be utilized. Thus we propose a speaker



consistency loss (SCL) to maximize the cosine sim-

ilarity between speaker embeddings extracted from

the natural and the same speaker’s synthesized mel-

spectrogram. The core idea is inspired by Nachmani

et al. [11], which has shown a possible way to apply

such loss to the cross-lingual TTS task. While their

work only used the gradient of the loss to update the

speaker encoder’s parameters, which has little influ-

ence on the speech synthesis process, in this work

we used the gradient to update the parameters of

the decoder in the Tacotron2 model.

As illustrated in Figure 2, to compute the SCL the

proposed method first feeds the text and the speaker

embedding extracted from a target speaker’s natu-

ral mel-spectrogram to the multi-speaker Tacotron2

model to synthesize a mel-spectrogram of the source

language. The synthesized mel-spectrogram is then

fed to the speaker encoder to get the speaker embed-

ding of the synthesized mel-spectrogram of the same

speaker. Finally the cosine similarity between the

two embeddings of the same speaker is maximized.

In the fine-tuning stage we froze the parameters of

the speaker encoder and the Tacotron2 model ex-

cept for the mel-spectrogram decoder. Formally, the

SCL is defined as:Lscl = −
∑

i,j cos (fs(x̃ij), eij)). In

addition, during experiments we found only using

cross-lingual data to fine-tune would decrease the

speech quality. We then computed SCL for both

intra-lingual and cross-lingual speakers to fine-tune

the TTS model and saw improvements in this case.

To stabilize the fine-tuning, we still include the L1

loss in this process. Thus the loss function for fine-

tuning is defined as: Lft = Ltts + αLscl, where α is

a hyperparameter.

4 Experiments
4.1 Experimental Setup

In our experiments, English is regarded as the

source language, and Japanese is regarded as the

target language. We used English multi-speaker

dataset VCTK [12] and Japanese multi-speaker

dataset JVS [13] to train the speaker verification

model. The total number of speakers was 207

in which 107 were English speakers and 100 were

Japanese speakers. We randomly picked up 8 En-

glish speakers and 8 Japanese speakers (both con-

tained 4 female and 4 male speakers) as unseen

speakers and excluded their data from the train-

ing and fine-tuning process. All audios were down-

sampled to 16 kHz and converted to 80-dimensional

mel-spectrograms. The frame number of the mel-

spectrogram was segmented to [120, 150] for train-

ing and inference of the speaker verification model.

After training the speaker encoder we trained the

TTS model by the L1 loss Ltts using the VCTK

dataset. Then we fine-tuned the TTS model us-

ing the fine-tuning loss Lft with both English and

Japanese data. Finally we used WaveRNN [14]

to convert the synthesized mel-spectrogram to the

time-domain waveform.

In all experiments, the dimension of the speaker

embedding was set to 64. The number of utterances

k for computing speaker embedding and the weight

hyperparameter α of SCL were empirically set to 5

and 0.1, respectively. We multiplied the gradient

back-propagated from language classifier to the em-

bedding by a factor λp = 2
1+exp (−10·p) − 1, where p

represents the training progress ranging from 0 to 1.

We trained four models for comparison. The first

two models were trained using the baseline and the

proposed methods (Section 2, 3), which are denoted

by Base. and DA+SCL, respectively. For abla-

tion experiments we additionally trained two mod-

els. The Base.+SCL model was trained by using

SCL with baseline speaker encoder but without do-

main adaptation. The DA model was trained by the

proposed method without SCL. Note that we didn’t

fine-tune the TTS model for the two models without

using SCL (Base. and DA).

4.2 Subjective Evaluation

We evaluated the synthesized speech from two as-

pects: speech naturalness and speaker similarity. In

addition to the 16 unseen speakers, we randomly

picked 16 speakers from the training set as seen

speakers. Note that, since models without using

SCL have no fine-tuning step, the 8 Japanese seen

speakers are seen by the speaker encoder but com-

pletely unseen by the TTS model of Base. and DA.

For each speaker we synthesized 20 utterances. All

of these utterances were not included in the train-

ing process. We used Amazon Mechanical Turk1 to

conduct the subjective evaluation.

4.2.1 Speech Naturalness

We conducted 5-scale mean opinion score (MOS)

tests to evaluate the speech naturalness of the syn-

thesized speech. We categorized all utterances into

four groups by their speaker (seen/unseen) and task

(intra-lingual/cross-lingual); the MOS was calcu-

lated separately for each group. Totally 720 English

listeners joined in the evaluation; each test had 90

listeners with 25 answers per listener. The result is

shown in Table 2, in which ground truth (GT) rep-

resents the natural speech. It can be observed that

the proposed DA+SCL model obtains the best per-

formance in all tasks. For the intra-lingual task,

Base.+SCL also obtains significant improvements

compared to Base. and DA, demonstrating that the

SCL can improve the intra-lingual speaker adapta-

tion. In contrast, for the cross-lingual tasks the per-

formance of Base.+SCL degrades significantly while

the DA+SCL model still maintained similar perfor-

mance compared to their performance on the intra-

1https://www.mturk.com/



Table 1 Results of XAB tests on speaker similarity. Bold scores indicate preferred method has p value less

than 0.05
Task Speaker Base. vs. DA Base.+SCL vs. DA+SCL DA vs. DA+SCL Base.+SCL vs. DA

Intra-lingual
Seen 0.464 - 0.536 0.473 - 0.527 0.500 - 0.500 0.468 - 0.532

Unseen 0.450 - 0.550 0.448 - 0.552 0.479 - 0.521 0.504 - 0.496

Cross-lingual
Seen 0.440 - 0.560 0.408 - 0.592 0.492 - 0.508 0.408 - 0.592

Unseen 0.524 - 0.476 0.531 - 0.469 0.488 - 0.512 0.496 - 0.504

Table 2 Results of MOS evaluation on naturalness.

Bold indicates better method comparing to Base.

without overlapping 95% confidence interval

Task Spkr. Base.
Base.+
SCL DA

DA+
SCL GT

Intra
Seen 3.51 3.65 3.58 3.67 4.04
Unseen 3.62 3.73 3.61 3.77 4.15

Cross
Seen 3.39 2.84 3.60 3.61 4.04
Unseen 3.54 3.07 3.48 3.55 4.06

lingual tasks. This demonstrates that the domain

shift makes it difficult to apply SCL directly for

adapting the TTS model to cross-lingual speakers.

Finally the DA model also has comparable perfor-

mance to the DA+SCL model, which shows the

effectiveness of removing the domain shift for the

cross-lingual tasks.

4.2.2 Speaker Similarity

We then conducted preference XAB tests to evalu-

ate the speaker similarity of the synthesized speech.

Here X is the natural speech, which is English for

VCTK speakers and Japanese for JVS speakers. We

chose four pairs among all six combinations of the

four models. Totally 800 listeners joined in the eval-

uation; each test had 25 listeners with 10 answers

per listener. The result is shown in Table 1. The

DA and DA+SCL models both obtain relatively bet-

ter performance than the Base. and Base.+SCL

models, respectively, which shows the effectiveness

of the proposed method. Surprisingly, the perfor-

mance of DA and DA+SCL are almost the same,

which implies the SCL has relatively little influence

on speaker similarity.

5 Conclusions
This paper described a method for cross-lingual

speaker adaptation for TTS synthesis based on

a language-independent speaker encoder using do-

main adaption and a speaker consistency loss which

makes it possible to fine-tune the TTS model of

source language on the target language’s data. Ex-

perimental results demonstrated that the proposed

model could significantly improve speech natural-

ness compared to the baseline method.
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