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1 Introduction

Pause insertion is an essential part of text-to-
speech (TTS) systems because proper pauses with
natural duration significantly enhance the rhythm of
synthetic speech. The position prediction of pauses
is called phrase break prediction or phrasing, which
is mainly solved by using neural networks with word
representations nowadays [1, 2, 3]. However, con-
ventional phrasing models ignore various speakers’
different styles of inserting silent pauses, which de-
grades the performance of the model trained on a
multi-speaker speech corpus. Besides, most main-
stream TTS models (e.g., FastSpeech 2 [4]) mainly
use phonemes as input. They treat all silent pauses
as one phoneme, which leads to the duration of all
silent pauses in synthetic speech following the same
distribution and not being sufficiently differentiated.
Therefore, we propose a pause insertion framework
for multi-speaker phoneme-based TTS models, in
which silent pauses are categorized by duration. In
our previous work, bidirectional encoder represen-
tations from transformers (BERT) [5] pre-trained
on a large-scale text corpus performed very well in
predicting English phrase breaks [6]. Our approach
in this study improves on the previous model by
adding multi-task learning and injecting speaker em-
beddings to capture various speaker features.

2 Proposed Method

We first categorize the silent pauses by duration
through the Gaussian mixture model-based method
in [7]. We specify the pauses as three categories:
brief (< 300 ms), medium (300–700 ms), and long
(> 700 ms). Besides, there are two main types of
silent pause: respiratory pauses (RPs) [8, 1] and
punctuation-indicated pauses (PIPs). The former
is inserted at word transitions without punctuation
to utter long sentences fluently, and the latter is
inserted at punctuation marks. Since their posi-
tion, frequency, and duration distribution are differ-
ent, we design the categorized pause insertion (CPI)
model with a multi-task learning framework shown
in Fig. 1. We use the encoder-decoder structure and
take BERT as the encoder. Two sets of BiLSTM
layers decode the output of the last layer (hidden
sequence) in BERT and speaker embeddings (ini-
tialized randomly) that correspond to the predic-
tions of RPs and PIPs. Probability and Cat-
egory in Fig. 1 represent position prediction and
category prediction, respectively. In practice, the
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Fig. 1 Architecture of proposed method.

model first predicts Probability that represents the
occurrence of pauses and then outputs Category
with the highest probability among the three cate-
gories. These predicted pauses are input into TTS
models as phonemes, the three categories of which
can be denoted as “sp1”, “sp2”, and “sp3” whereas
we usually denote silent pauses as ”sp” in TTS tasks.

3 Experiments

3.1 Dataset

We constructed the dataset from LibriTTS [9],
a multi-speaker English corpus derived from audio-
books. LibriTTS includes plenty of long-form sen-
tences containing multiple silent pauses uttered by
more than 2,000 speakers, and thus fits our pur-
pose of evaluating the performance of multi-speaker
pause prediction. We used the Montreal Forced
Aligner (MFA) [10] to align text and speech and
obtain pause durations. Because MFA recognizes
the silence at word transitions over 30 ms as silent
pauses, we regarded silent pauses over 30 ms at
punctuation marks as PIPs and those over 50 ms
at word transitions without punctuation as RPs.

3.2 Baseline

Klimkov et al. provided the mainstream frame-
work of a phrasing model based on English au-
diobooks [1], which was implemented as our base-
line. In the baseline model, the input word2vec
embeddings were processed by BiLSTM projection
with peephole connection (BiLSTMP) [11] layers
and splicing windows. The splicing window stacked
together seven frames before and after and fed them
to the next layer. The model output the probability
of the occurrence of a pause after each token.

3.3 Experimental Configuration

For the baseline model, the hidden size and pro-
jection size for each BiLSTMP layer were 512 and



Table 1 Results of position prediction of RPs.

Precision Recall Fβ

Baseline 0.393 0.187 F0.5 = 0.322
CPI 0.575 0.261 F0.5 = 0.463

Table 2 Confusion matrix of category prediction.

Prediction of RPs Prediction of PIPs
Label 1 2 3 1 2 3
1 2,565 885 0 6,155 1,766 2,058
2 300 513 0 2,258 3,186 2,509
3 14 20 0 335 352 2,735

128, respectively. The dimension of word2vec em-
beddings was 300. For the proposed model, we con-
figured the BERT as BERTBASE

1 and set the hidden
size of each BiLSTM layer to 512. The dimensions of
the hidden sequence and speaker embeddings were
768. Word2vec embeddings and BERTBASE were
pre-trained on BookCorpus [11]. The loss function
was binary cross-entropy (BCE) loss for Probabil-
ity and weighted cross-entropy (WCE) loss for Cat-
egory. The weights of categories 1–3 in WCE loss
function equaled the total number of non-pause to-
kens divided by their total number in the training
set. As an exception, we set the weight of category
3 of RPs to 1.0 due to its sparseness.
During training, each mini-batch had 32 sen-

tences. We used the Adam optimizer and set the
initial value of the learning rate to 5 × 10−5. The
learning rate dropped by 0.2 times when the model’s
performance on the validation set did not improve
within 5000 iterations. We took 200,000 as the max-
imum iterations (about 16 epochs). The models that
performed best on the validation set during these it-
erations were saved to make comparisons.

3.4 Objective Evaluations

For phrasing models, their performance is usually
measured by position prediction of RPs because po-
sition prediction of PIPs is a relatively simple task.
The results are shown in Table. 1, in which our
proposed CPI model performed much better than
the baseline. Word representations from pre-trained
BERT and speaker embedding bring a huge boost
to the model. Table 2 shows the results of category
prediction of CPI model. In category prediction,
the accuracy of category 2 was lower than that of
the other two categories, which suggests that there
is still some room for improvement in the choice of
thresholds for categorization.

3.5 Subjective Evaluations

To explore the performance of our proposed mod-
els in multi-speaker TTS, especially to show the im-
provement of inputting categorized pause phonemes,
we performed AB preference tests using FastSpeech
2 as our TTS model with HiFi-GAN [12] as the
vocoder. We trained two TTS models with silent
pause phonemes, one with non-categorized pauses,

1https://huggingface.co/bert-base-uncased

Table 3 Subjective performance of CPI.

Method A Score Method B
CPI(RPs) 0.560 vs. 0.440 FastSpeech2
CPI(RPs) 0.537 vs. 0.463 Baseline
CPI 0.557 vs. 0.443 Baseline
CPI(RPs) 0.488 vs. 0.512 CPI(Position)
CPI(RPs) 0.460 vs. 0.540 CPI

and one with categorized pauses. We selected 16
speakers (eight males, eight females) with good syn-
thetic sound quality and 123 long sentences with
more than 1 RPs from the test set. Each sen-
tence corresponds to several speakers, and then 277
text-speaker pairs were used in our listening tests.
We asked native listeners from Amazon Mechanical
Turk to participate in the tests. Every test was com-
pleted by 30 listeners, each of whom listened to ten
pairs of synthetic speech and was asked to choose
the one with better rhythm.
The results are shown in Table. 3, in which Base-

line and CPI(PRs) only predicted the position of
RPs, and CPI(Position) predicted the position of
RPs and PIPs. Test scores with p-values below 0.05
are bold-faced. From the results, listeners perceived
the difference between CPI(RPs) and Baseline to
be insignificant, which shows people are insensitive
to the position of RPs. People only became aware
when listening to a long sentence without a pause,
that was why CPI(RPs) performed a little better
than Baseline. Listeners were more likely to recog-
nize that CPI performed better than Baseline and
CPI(RPs). Coupled with the inability of the lis-
teners to distinguish significantly between CPI(RPs)
and CPI (Position), we can conclude that inputting
categorized pause phonemes to phoneme-based TTS
models makes the rhythm of synthetic speech better.

4 Conclusion

In this paper, we proposed a categorized pause in-
sertion model. The results of objective evaluations
showed that word representations from pre-trained
BERT and speaker embeddings can bring a large im-
provement to phrasing models trained with a multi-
speaker dataset. The results of subjective evalua-
tions showed that by inserting categorized pauses,
the synthetic speech had better rhythm.
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