NON-PARALLEL VOICE CONVERSION USING VARIATIONAL AUTOENCODERS
CONDITIONED BY PHONETIC POSTERIORGRAMS AND D-VECTORS

Yuki Saito"*, Yusuke Ijima*, Kyosuke Nishida*, and Shinnosuke Takamichi'

T Graduate School of Information Science and Technology, The University of Tokyo
P NTT Media Intelligence Laboratories, NTT Corporation, Japan

ABSTRACT

This paper proposes novel frameworks for non-parallel voice con-
version (VC) using variational autoencoders (VAEs). Although con-
ventional VAE-based VC models can be trained using non-parallel
speech corpora with given speaker representations, phonetic con-
tents of the converted speech tend to vanish because of an over-
regularization issue often observed in latent variables of the VAEs.
To overcome the issue, this paper proposes a VAE-based non-parallel
VC conditioned by not only the speaker representations but also
phonetic contents of speech represented as phonetic posteriorgrams
(PPGs). Since the phonetic contents are given during the training, we
can expect that the VC models effectively learn speaker-independent
latent features of speech. Focusing on the point, this paper also
extends the conventional VAE-based non-parallel VC to many-to-
many VC that can convert arbitrary speakers’ characteristics into an-
other arbitrary speakers’ ones. We investigate two methods to esti-
mate speaker representations for speakers not included in speech cor-
pora used for training VC models: 1) adapting conventional speaker
codes, and 2) using d-vectors for the speaker representations. Exper-
imental results demonstrate that 1) PPGs successfully improve both
naturalness and speaker similarity of the converted speech, and 2)
both speaker codes and d-vectors can be adopted to the VAE-based
many-to-many non-parallel VC.

Index Terms— VAE-based non-parallel VC, phonetic posteri-
orgrams, d-vectors, many-to-many VC

1. INTRODUCTION

Voice conversion (VC) [1] is a technique to convert characteristics of
source speech into those of target speech while keeping its linguis-
tic information. Recently, deep neural networks (DNNs) [2] have
been adopted to VC models which convert source speech parameters
into target speech parameters because they can accurately convert
characteristics of speech compared to conventional Gaussian mix-
ture models (GMMs) [3]. The DNNs are typically trained by using
parallel speech corpora that include the same utterances recorded by
source and target speakers. Although these models can learn frame-
wise mapping from source speech parameters into target speech pa-
rameters and significantly improve quality of the converted speech,
recording parallel speech corpora for training the VC models is often
difficult in practice.

To overcome the difficulty caused by using parallel speech
corpora, researchers have been investigated non-parallel VC, which
does not require any parallel speech corpora to construct VC models.
Recently, variational autoencoders (VAEs) [4] have been adopted to
the VC models for non-parallel VC because their training criterion
is more tractable than restricted Boltzmann machines [5]. In the
conventional VAE-based non-parallel VC [6], encoder networks

extract speaker-independent latent variables from input speech pa-
rameters, and decoder networks reconstruct the parameters from
the latent variables, and given speaker representations. Thus, we
can suppose that the latent variables represent phonetic contents of
speech, and VC is done by modifying the speaker representations
fed into the decoder networks. However, quality of the converted
speech is lower than that converted by DNNs trained with parallel
speech corpora. One of the primal issues that causes the quality
degradation is an over-regularization effect often observed in the
latent variables of the VAEs [7], which makes the distribution of
the latent variables be too simplistic. One can address the issue by
using more complex prior distribution of the latent variables such
as GMMs [8], but adopting this idea to the VAE-based non-parallel
VC seems to be difficult because variation in the phonetic contents
is typically large and thus the number of the cluster of the GMMs
should not be readily decided.

To improve the quality of speech converted by conventional
VAE-based non-parallel VC, this paper proposes an effective frame-
work for training the VC models. In the framework, VAEs are
trained on the condition of not only the speaker representations
but also phonetic contents of the input speech are given during
the training. Assuming that large speech corpora for constructing
speaker-independent automatic speech recognition (ASR) models
are available, we introduce output of the ASR models (phonetic pos-
teriorgrams: PPGs) [9] to the VAE-based VC because they can be
regarded as the latent variables of the phonetic contents. Moreover,
focusing on an ability of the VAEs to extract speaker-independent
latent variables of speech taken from many and unspecified speak-
ers, we also extend the conventional VAE-based non-parallel VC to
many-to-many VC, which can convert arbitrary speakers’ character-
istics into another arbitrary speakers’ ones. To this end, we investi-
gate effective speaker representations for many-to-many non-parallel
VC. In addition to conventional speaker codes [10], we introduce d-
vectors [11], which are obtained by output of pre-trained automatic
speaker verification (ASV) models, to the speaker representations.
Since the effectiveness of the d-vectors are well known in ASV, we
can regard them as latent variables of the speaker representations
for arbitrary speakers. Experimental results demonstrate that 1)
PPGs successfully improve both naturalness and speaker similarity
of the converted speech compared to the conventional VAE-based
non-parallel VC, and 2) both speaker codes and d-vectors can be
adopted to the VAE-based many-to-many non-parallel VC.

2. CONVENTIONAL VAE-BASED NON-PARALLEL VC

2.1. Non-parallel VC using VAEs conditioned by speaker codes [6]
VAE-based VC models represent probabilistic generative models of
speech that speech parameters « are generated from their latent vari-
ables z and speaker representations y,. In [6], speaker codes [10]
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Fig. 1. Directed graphical models of VAE-based VC models; (a)
VAEs conditioned by one-hot speaker codes y,, (b) VAEs condi-
tioned by one-hot speaker codes y, and PPGs z,, and (c) VAEs
conditioned by d-vectors zs and PPGs z;,. Black and red arrows de-
note inferring latent variables and generating speech parameters x,
respectively.

are adopted to the speaker representations, which use 1-of-S repre-
sentation to identify the one of S-speakers. The speaker codes for
the ¢-th speaker are defined as follows:

v" (k) = {O otherwise (1sksS). M
Assuming that z is independent of y,, our objective is to estimate
model parameters € that maximize the marginal likelihood of the
speech parameters conditioned by given speaker representations,
po(z|y,) = [pe(x|z,y,)pe(z)dz, where pg(z) is a prior of the
latent variables. Since the integral in the likelihood is intractable,
we introduce two networks; speaker-independent encoder networks
g (z|x), which approximate true posterior of the latent variables
pe(z|x), and speaker-dependent decoder networks, which approx-
imate true posterior of the speech parameters po(x|z,y,). ¢ and
0 are sets of model parameters of the encoder and decoder, re-
spectively. The objective for training the VAEs is maximizing the
variational lower bound of the log likelihood defined as follows:

L(0, p;,y,) = — Dk (g5 (2|) || pe (2))

+ ]qus(z\:z:) [logpg (m|za ys)] )
where Dxr.(+]|-) denotes the Kullback-Leibler divergence between
two distributions. We assume that both encoder and decoder net-
works represent diagonal Gaussian distributions, of which the mean
and covariance are estimated by the networks. The isotropic Gaus-
sian distribution N (z; 0, I) is typically adopted to the prior pg(2)
in order to obtain closed form of the KL term in Eq. (2). The repa-
rameterization trick [4] is used for the backpropagation algorithm.
Figure 1(a) illustrates the directed graphical model of the VAEs.

After training the VAEs, VC can be easily performed by feeding
the speaker codes of the target speaker into the decoder. For instance,
when we convert source speech parameters into those of the j-th
speaker included in speech corpora used for the training, we feed

y9ie., yi (k) = 1if k = 7, into the decoder frame-by-frame.
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2.2. Problems

Since we assume that the latent variables are independent of the
speaker representations, they can be expected to represent phonetic
contents of speech. However, in the conventional VAE-based non-
parallel VC [6], the phonetic contents tend to vanish because of too
strong influence of the prior used in the KL term of Eq. (2). This
issue is known as an over-regularization of the latent variables [7],
which often makes the obtained latent variables be overly simpli-
fied and poorly represent the underlying structure of the phonetic
contents. Moreover, although the VAEs have a potential to extract
speaker-independent latent variables from many and unspecified
speakers, currently they can only convert characteristics of speakers
into those of target speakers included in speech corpora used for
training the VAEs.

3. PROPOSED VAE-BASED NON-PARALLEL VC

Here, we propose a novel framework for the VAE-based non-parallel
VC to improve the converted speech quality. Moreover, we extend
the conventional VAE-based non-parallel VC to many-to-many VC,
which can convert arbitrary speakers’ characteristics into another ar-
bitrary speakers’ ones.

3.1. Non-parallel VC using VAEs conditioned by PPGs and
speaker codes

Instead of estimating phonetic contents of source speech as the latent
variables of the VAEs, we directly utilize the phonetic contents for
training the VAEs. Although a straightforward way to realize this is
to use phoneme sequences, we adopt PPGs [9], which are obtained
by output of pre-trained ASR models R(-), as the phonetic contents
because we can expect them to represent speaker-independent latent
variables of the phonetic contents. Let z, = R(x) be PPGs pre-
dicted from speech parameters x. In the proposed framework, the
objective function shown in Eq. (2) is rewritten as:

L(6, 9z, Y, 2p) = — Dxr (q¢ (2], 2p) || pe (2))

+ ]qu&(zh;,zp) [lnge (w‘zv zp: yq)] I
that is, the PPGs z,, are fed into both of the encoder and decoder net-
works, which guarantees that the phonetic contents of source speech
are kept in the training and conversion stage. Figure 1(b) shows

the directed graphical model of the proposed VAE-based VC using
PPGs and speaker codes.

3

3.2. Effective speaker representations for many-to-many VC
When target speaker of many-to-many VC is not included in speech
corpora used for training VAEs, we have to estimate speaker rep-
resentations for the new speaker using small amount of utterances.
Here, we investigate two methods for estimating the speaker repre-
sentations for new speakers; 1) adapting speaker codes to the new
speaker, and 2) using d-vectors which are effective in ASV.

3.2.1. Adapting speaker codes using backpropagation algorithm

One way to achieve many-to-many VC with conventional speaker
codes is adapting them to the new speaker, which was firstly inves-
tigated in DNN-based multi-speaker text-to-synthesis [12]. First,
we set initial values of the estimated speaker codes as ;Qs(tar) (k) =
1/S (1 < k < S). Then, we calculate the mean squared error
(MSE) between input speech parameters () and reconstructed
speech parameters 21 defined as LMSE(m(“ar) , ﬁc(t"")) = (m(tar) —
:i(tar))—l' (w(tar) _ i(tar))’ where :ﬁ(tar) ~ pe(m(tar) ‘27 Qgtar))
and 2 ~ qg(z|x*™)). Finally, we calculate the gradient of
the MSE by the estimated speaker codes dLnse/d9*™ with
the backpropagation algorithm, and update the speaker codes as
9 — ndLmse /0yt with small coefficient 7. We iterate the
procedure to obtain better speaker codes for the new speaker.

3.2.2. Using d-vectors for speaker representations

d-vectors [11], which are obtained by bottleneck features of pre-
trained ASV models V'(+), are adopted to the speaker representations
for many-to-many VC. Because the role of the ASV models is to ex-
tract features used for identifying specific speaker, We can regard
the d-vectors as latent variables of the speaker representations. Let
zs = V(x) be d-vectors extracted from speech parameters x. Here,
the objective function shown in Eq. (3) is rewritten as:

L(0,b;x, 25, 2p) = — Dk (40 (2], 2p) || po (2))

+ ]Eq¢(z|w7zp) [logpe (x|z, zp, 2s)],
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that is, the conventional discrete speaker codes are replaced with the
continuous d-vectors. In training the VAEs, the d-vectors are fed
into the decoder networks frame-by-frame in the same manner as
the speaker codes. In conversion stage, the speaker representations
for new target speaker are estimated as the averaged values of the d-
vectors in voiced regions. Note that, this differs from the traditional
use of the d-vectors in literatures of ASV, which represents the char-
acteristics of speakers as the averaged values of the d-vectors in all
regions. Figures 1(c) and 2 show the directed graphical model and
overview of the proposed VAE-based VC using PPGs and d-vectors,
respectively.

3.3. Discussion

In the proposed VAE-based VC using PPGs and d-vectors, we have
to construct the ASR and ASV models by using relatively large
amount of speech corpora. Although labeling data for training these
models somewhat costs, we can incorporate the models into the pro-
posed framework for training the VAEs in the same manner as semi-
supervised learning of a conditional VAEs [13]. Moreover, tech-
niques for end-to-end speech processing [14, 15] can be also applied
to the proposed VAE-based VC.

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions

We used two speech corpora for the evaluation. The one for train-
ing ASR and ASV models for the proposed VAE-based VC using
PPGs and d-vectors included Japanese 260 speakers (130 male and
130 female speakers). Each speaker uttered about 100 utterances,
and total time of the speech corpus was about 31 hours. The other
for training/evaluating VC models included Japanese three speakers
(two male and one female speakers). We constructed two VC models
for male-to-male and male-to-female conversion. Since 425 fully-
parallel utterances were recorded by the three speakers, we used 400
utterances for the training and 25 utterances for the evaluation. In
order to make non-parallel setting in the VAE-based VC, we divided
the 400 utterances into two subsets; i.e., the 1st-through-200th ut-
terances were taken from source speaker, and the remainders were
taken from target speaker. The sampling rate of the all speech cor-
pora was 22.05 kHz. The STRAIGHT vocoder [16] was employed
to extract 40 dimensional mel-cepstral coefficients, 10 band aperi-
odicities, log FO, and U/V at 5 ms steps. The mel-cepstral coef-
ficients were normalized to have zero-mean unit-variance. In the
conversion stage, the 1st-through-39th mel-cepstral coefficients and
their dynamic features were converted by VC models. The input Oth
mel-cepstral coefficients were directly used as those of target speech.
The MLPG [17] was performed to generate static mel-cepstral coef-
ficients. Input FO was linearly transformed, and band-aperiodicity
was not transformed.

In the evaluation, we compared the performances of the follow-
ing four VC models.

FFNN: Feed-Forward DNNs trained by using parallel speech cor-
pora

VAE-SC: VAEs using speaker codes [6]
VAE-SC-PPG: VAE:s using speaker codes and PPGs
VAE-DV-PPG: VAEs using d-vectors and PPGs

These models were firstly evaluated in one-to-one VC, which trained
VC models by using speech corpora including only source and target
speakers. In one-to-one VC, the VAEs were trained with completely
non-parallel speech corpora, while the DNNs used in “FFNN”
were trained with fully-parallel speech corpora aligned by using
the dynamic time warping (DTW) algorithm, which were referred
to the ideal baseline of the VC models. Besides, “VAE-SC-PPG”
and “VAE-DV-PPG” were evaluated in many-to-many VC, which
trained VC models by using speech corpora including 260 speakers
used for constructing the ASR and ASV models, In the conversion
stage, speaker representations for the target speaker were estimated
using the methods described in Sections 3.3.1 and 3.3.2.

All architectures for DNNs and VAEs used in the evaluation
were Feed-Forward. The ASR models predicted 56-dimensional
PPGs frame-by-frame. The hidden layers of the ASR models had
4 x 1024 units with sigmoid non-linearity. The ASV models pre-
dicted posterior probabilities of the speaker identity. Here, in ad-
dition to the 260 speakers, the one value which denotes unvoiced
region was attached to the speaker identity. The hidden layers of
the ASV models had 4 x 256 units with sigmoid non-linearity. The
16-dimensional d-vectors were extracted from the bottleneck layer
of the ASV models. In the VAEs, the encoder networks had two hid-
den layers with rectified linear unit (ReLU) [18] non-linearity. The
number of hidden units for the first and second hidden layers were
256 and 128, respectively. The architecture for the decoder networks
was symmetric about that for the encoder. The dimensionality of the
latent variables was 64. Feed-Forward DNNs were constructed by
using fully-parallel speech corpora including only source and target
speakers. The hidden layers of the DNNs had 4 x 128 units with
ReLU non-linearity. The optimization algorithm was AdaGrad [19],
whose learning rate was set to 0.01. All of the VC models were
trained with 25 epochs.

4.2. Objective evaluation

We calculated mel-cepstral distortions (MCDs) between target and
converted mel-cepstral coefficients. We aligned frame length of tar-
get and converted mel-cepstral coefficients by using DTW algorithm
to calculate MCDs. The effects of the number of utterances used for
training VC models or estimating new speaker representations were
also investigated. The four VC models to be compared in one-to-one
VC were trained by using 5, 10, 25, 50, 100, and 200 utterances.
In many-to-many VC, speaker representations for the target speaker
were estimated by using the same numbers of the Utterances as used
in the training for one-to-one VC.

Figure 3 shows the results in the evaluation of one-to-one VC.
Nevertheless the VC models were trained completely non-parallel
speech corpora, MCDs of the proposed “VAE-SC-PPG” and “VAE-
DV-PPG” were significantly improved compared with the conven-
tional “VAE-SC,” and became closer to those of “FFNN” trained
with fully-parallel speech corpora. Moreover, the MCDs of “VAE-
DV-PPG” were slightly lower than those of “VAE-SC-PPG,” which
suggested that the continuous speaker representations worked better
in VAE-based non-parallel VC.
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Fig. 4. MCDs of converted speech in many-to-many VC.

Figure 4 shows the results in the evaluation of many-to-many
VC. Focusing on the number of utterances used to estimate the
speaker representations, the MCDs of “VAE-SC-PPG” had a ten-
dency to decrease by using more utterances for the estimation, al-
though the improvements were very limited. Meanwhile, the MCDs
of “VAE-DV-PPG” were almost constant and always lower than
those of the “VAE-SC-PPG,” regardless of the number of utterances
and gender of the target speaker. These results indicated that using
d-vectors was more effective for estimating the speaker represen-
tations than adapting speaker codes in many-to-many non-parallel
VC.

4.3. Subjective evaluation

We conducted subjective evaluations in terms of naturalness and
speaker similarity of the converted speech. Here, six VC mod-
els named as “FFNN,” “VAE-SC,” “VAE-SC-PPG (one-to-one),”
“VAE-DV-PPG (one-to-one),” “VAE-SC-PPG (many-to-many),”
and “VAE-DV-PPG (many-to-many)” were compared at the same
time. The fully-parallel speech corpora including 400 utterances
of source and target speakers were only used to train “FFNN.”
The non-parallel speech corpora including 200 utterances of source
and target speakers were used to train “VAE-SC,” “VAE-SC-PPG
(one-to-one),” and “VAE-DV-PPG (one-to-one).” 100 utterances
of target speakers were used for estimating their speaker represen-
tations for “VAE-SC-PPG (many-to-many)” and “VAE-DV-PPG
(many-to-many).” A five-point scaled mean opinion scores (MOS)
test was conducted to evaluate naturalness of the converted speech.
Speech samples generated by each model were presented listeners
in random order. Similarly, a five-point scaled differential MOS
(DMOS) test was conducted to evaluate speaker similarity of the
converted speech. Re-synthesized speech samples from their speech
parameters were presented with corresponding converted speech in
random order. 8 listeners participated in each evaluation.

Figure 5 shows the results. Here, only “FFNN” was trained with
aligned fully-parallel speech corpora and the scores were referred to
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Fig. 5. Results of subjective evaluations in terms of (a) naturalness
and (b) speaker similarity with 95% confidence intervals.

the ideal baseline of the VC models. Focusing on the resultant scores
of one-to-one VC, the proposed “VAE-SC-PPG (one-to-one)” and
“VAE-DV-PPG (one-to-one)” achieved significantly higher scores
than those of the conventional “VAE-SC” in terms of both natu-
ralness and speaker similarity, which demonstrated that the PPGs
successfully improved quality of the converted speech in the VAE-
based non-parallel VC. On the other hand, focusing on the scores of
many-to-many VC, the proposed “VAE-SC-PPG (many-to-many)”
and “VAE-DV-PPG (many-to-many)” achieved almost the same
performances as those in one-to-one VC, even though the source
and target speakers were not included in speech corpora used for
constructing the VC models. These results demonstrates that the
conventional VAE-based non-parallel VC was extended to many-to-
many VC by using effectively estimated speaker representations. We
also found that the d-vectors were effective to improve naturalness
of the converted speech in inner-gender VC.

5. CONCLUSION

This paper proposed a novel framework for non-parallel voice con-
version (VC) using variational autoencoders (VAEs). In the pro-
posed framework, phonetic posteriorgrams (PPGs), which represent
latent variables of phonetic contents, were introduced to the conven-
tional VAE-based VC in order to improve the converted speech qual-
ity. The conventional VC using VAEs was also extended to many-
to-many VC, which can convert arbitrary speakers’ characteristics
into another arbitrary speakers’ ones. d-vectors, which represent
characteristics of speakers as continuous vectors, were adopted to
speaker representations for many-to-many VC, in addition to con-
ventional speaker codes. Experimental results demonstrated that 1)
PPGs successfully improved both naturalness and speaker similarity
of the converted speech, and 2) both speaker codes and d-vectors
were adopted to the VAE-based many-to-many non-parallel VC. In
the future, we will further investigate the effect of the dimensionality
of the d-vectors.
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