HumanACGAN: conditional generative adversarial network with human-based auxiliary classifier and its evaluation in phoneme perception

Yota Ueda¹, Kazuki Fujii², Yuki Saito¹, Shinnosuke Takamichi¹, Yukino Baba³ and Hiroshi Saruwatari¹ 1. The University of Tokyo, Japan, 2. National institute of Technology, Tokuyama College, Japan, 3. University of Tsukuba, Japan

2. RESEARCH BACKGROUND					
Humans can accept outside of real Human-acceptable distribution Real-data distribution Conditional human-acceptable	data Moo Conditional	Jeling met Real-data distribution GAN [1]	thod Human- acceptable distribution HumanGAN [2]	GeneHumanACGANDMaximizing $L_S + \lambda L_C$ durin $L_S + \lambda L_C$ ($L_C = \sum D_C(\hat{x}_n, c)$ Estimating gradient using	rator (NN NN Ng ge (c_n)) (S_n)
distribution for practical use (text-to-speech etc.)	Unconditional	ACGAN [3]	HumanACGAN (ours)	$\frac{\partial(L_S + \lambda L_C)}{\partial \hat{x}_n} \approx$	$\approx \frac{1}{2\sigma^2}$
$\begin{array}{c c} & \text{Generator } G\\ \hline & \text{GAN [1]} & \text{DNN} \\ & \text{HumanGAN [2]} & \text{DNN} \\ & \text{ACGAN [3]} & \text{DNN} \\ \end{array}$	Discriminator D _S DNN Humans DNN	Class Class Class	sifier D _C -	Experimental condition Corpus Analysis/synthesis Optimization Data space	ns JV W St Ap
Gradient is calculated analytically. $\begin{array}{cccc} G & D_S \\ Prior \longrightarrow & & & & & \\ & & & & & \\ & & & & & & \\ \hline & & & &$				Experiment 1: estimationMethodPreparing perturbated dataSynthesizing speech wavefeHumans' tasksAs discriminator: Evaluatesacceptability D_S As classifier: Evaluates diffeResultsGradients pointed to darkerGradients for generator traiGradients byGradients by	
$\begin{array}{c} G(\cdot) \\ \text{Prior} \rightarrow & \widehat{x}_{n} & \xrightarrow{\hat{x}_{n} + \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data}} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \frown \oplus \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \bigcirc \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \frown \oplus \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \oplus \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \oplus \oplus \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \oplus \oplus \text{Data} & \text{Humans} \\ & \widehat{x}_{n} - \Delta x_{n}^{(r)} \rightarrow \oplus $					
CGAN [3] Maximizing $-L_S + \lambda L_C$ during general $L_C = \sum \log D_C(x_n, c_n) + \sum \log(D_C(\hat{x}_n))$ Gradients are calculated analytically $Prior \rightarrow O = \hat{x}_n \rightarrow O$	$\frac{1}{(1-1)} + \frac{1}{(1-1)} + $	сe		naturalness acceptability acc 16 12 0 16 12 0 4 0 -4 -8 -12 -8 -4 0 4 8 12 $-1215t$ PC • :Genera	ceptak -8 -4 ated c

G

Η

A

1. SYNOPSIS

1. Proposes a generative adversarial network (GAN) that represents conditional human acceptable distributions.

References [1] Goodfellow et al., Proc. ICASSP, 2014. [2] Fujii et al., Proc. ICAL, 2018. [5] " http:// research.nii.ac.jp/src/en/JVPD.html [6] Morise et al., IE/CE, 2016.

tochastic gradient descent

pplying PCA (principal component analysis) to log spectral envelope nd using 1st and 2nd PC as data space

of gradient **Experiment 2: increase of objective function** Method $\hat{x} + \Delta x$ and $\hat{x} - \Delta x$ Training generator for 4 iterations using estimated gradient form from $\hat{x} + \Delta x$ and $\hat{x} - \Delta x$ Perceptual test for generated data from initialized and trained generator difference in naturalness Evaluated sample Closed data (used in training) and open data ference in class acceptability D_{C} Results Prior probabilities of naturalness and class acceptability er (i.e., higher posterior) zones. increased. ining were estimated correctly. Generator was trained successfully. ts by class Gradients by class Naturalness acceptability bility of /i/ acceptability of /e/ brobability 0.8 0.6 ┶╪╧╧┙┥╸┥┿●╢ sterior ╘┻┝╼╼═╡╤┥┿┻┥ 0.4 -8-Ро -12 -8 -4 0 4 8 12 0 4 8 1 2 Initialized Trained data of /i/ =:Generated data of /e/

ICASSP 2021 paper ID: 1681

