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ABSTRACT

We propose StyleCap, a method to generate natural language de-
scriptions of speaking styles appearing in speech. Although most of
conventional techniques for para-/non-linguistic information recog-
nition focus on the category classification or the intensity estimation
of pre-defined labels, they cannot provide the reasoning of the recog-
nition result in an interpretable manner. StyleCap is a first step to-
wards an end-to-end method for generating speaking-style prompts
from speech, i.e., automatic speaking-style captioning. StyleCap
is trained with paired data of speech and natural language descrip-
tions. We train neural networks that convert a speech representation
vector into prefix vectors that are fed into a large language model
(LLM)-based text decoder. We explore an appropriate text decoder
and speech feature representation suitable for this new task. The ex-
perimental results demonstrate that our StyleCap leveraging richer
LLMs for the text decoder, speech self-supervised learning (SSL)
features, and sentence rephrasing augmentation improves the accu-
racy and diversity of generated speaking-style captions. Samples
of speaking-style captions generated by our StyleCap are publicly
available1.

Index Terms— Speaking styles, Natural language descriptions,
Self-supervised learning model, Large language models

1. INTRODUCTION

Speech contains not only linguistic information but also para-/non-
linguistic information [1]. The latter information, which includes
the speaker’s emotion and identity, can add variations to the spo-
ken (i.e., linguistic) content and enrich human speech communica-
tion. Hence, such information from speech needs to be automati-
cally recognized to develop human-oriented spoken language pro-
cessing technologies, such as a natural conversational agent. Ben-
efiting from the development of sophisticated deep learning archi-
tectures and techniques, such as Transformer [2] and self-supervised
learning (SSL) [3] for extracting meaningful feature representations
from speech, the accuracy of para-/non-linguistic information recog-
nition has been improved significantly [4]–[6]. Moreover, the knowl-
edge of deep learning-based technologies to recognize this informa-
tion can be shared with other speech generative tasks, such as expres-
sive text-to-speech (TTS) [7] and emotional voice conversion [8].

Another crucial factor for better para-/non-linguistic information
recognition is the explainability of the recognition results. Some ap-
plications such as healthcare will require not only the recognition
result but also its reasoning [9], which should be interpretable for
users. However, most existing techniques focus on the category clas-
sification or the intensity estimation of labels defined by authors or
dataset developers. One possible approach to solve this issue would
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Fig. 1. Concept of automatic speaking-style captioning.

be representing the evidence, i.e., para-/non-linguistic information
in speech, with a natural language description. Several studies have
attempted to acquire the relationship between para-/non-linguistic
information and natural language descriptions [10], [11]. However,
these methods still output class labels such as emotional states.

From a different viewpoint, generating natural language descrip-
tions from input audio/image data can be regarded as a captioning
task. For instance, audio captioning [12] and image captioning [13]
are tasks to describe content information (objects and its behavior)
in audio and image data, respectively. In these tasks, the remark-
able progress of large-scale pre-trained deep neural network (DNN)
models [14]–[16], has achieved the audio/image captioning perfor-
mance better than conventional methods. Unlike these tasks, this pa-
per focuses on para-/non-linguistic information rather than content
information in speech. However, since this information cannot be
directly observed in input speech [17], generating captions of such
information can be regarded as a new challenge.

In this paper, we propose a deep learning technique for describ-
ing para-/non-linguistic information such as speaking style in speech
with natural language, called automatic speaking-style captioning
(Fig. 1). One way to train a DNN-based speaking-style captioning
model is to use a sufficiently large dataset including many pairs of
speech and sentences that describe various speaking styles, but such
datasets have yet to be constructed. Instead, we combine the exist-
ing LibriTTS and PromptSpeech corpora and build a multi-speaker
speech corpus paired with the natural language instructions of speak-
ing styles (e.g., pitch, and speed) to train an end-to-end speaking-
style captioning model consisting of a speech encoder and a text
decoder. Inspired by the DNN-based method for image caption-
ing [18], our proposed method, StyleCap, predicts prefix vectors
fed into a large language model (LLM)-based text decoder from
fixed-length speech representation vectors extracted by the speech
encoder. In this paper, we experimentally explore an appropriate
text decoder and speech representation suitable for this new task.
In addition, since one speaking style can be described in various
ways, automatic speaking-style captioning involves learning one-
to-many mapping. To overcome this difficulty, we also introduce
a simple data augmentation method, sentence rephrasing augmen-
tation, that rephrases sentences using an LLM. We conduct an au-
tomatic style-captioning experiment to assess the effectiveness of
the proposed method, using evaluation metrics commonly utilized
in other natural language generation tasks. The experimental results
demonstrate that our StyleCap leveraging richer LLMs for the text
decoder, speech self-supervised learning (SSL) features, and sen-
tence rephrasing augmentation improves the accuracy and diversity
of generated speaking-style captions.
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Fig. 2. DNN architecture of StyleCap, end-to-end model that automatically describes speaking style of input speech with natural language.

2. METHODS

2.1. Task overview
We define automatic speaking-style captioning, a novel task that ex-
plains the speaking style of input speech with a natural language de-
scriptions. Specifically, a captioning model takes a single speaker’s
speech sample as the input and generates a sentence describing the
speaker’s speaking style, for instance, “The speaker’s sound height
is normal, but the speed is very fast, and the volume is very low.”

Let x and y be a speech waveform and a corresponding
speaking-style caption (i.e., token sequence), respectively. Be-
cause the lengths of x and y are different, one can introduce a
sequence-to-sequence model widely used in spoken language pro-
cessing tasks, such as Transformer [2], into this captioning task. In
Section 3, we evaluate the speaking-style captioning performance of
this naive Transformer-based encoder-decoder model.

2.2. StyleCap: end-to-end automatic speaking-style captioning
StyleCap incorporates two SSL models for speech and text process-
ing and achieves the end-to-end generative modeling of speaking-
style prompts. Fig. 2 shows an overview of StyleCap, which is
inspired by ClipCap [18], an existing model for automatic image
captioning. Specifically, StyleCap consists of three DNNs: speech
encoder, text decoder, and mapping network.

The speech encoder extracts a fixed-length feature vector from
an input speech waveform. Considering the success in various spo-
ken language processing tasks, we incorporate a speech SSL model
into the speech encoder. First, all hidden vectors of the SSL model,
hl = [hl,1, . . . ,hl,T ]

⊤ (l = 1, . . . , L), are extracted from a speech
waveform x. Then, the weighted-sum of the hidden layer outputs
along layers for each frame index t, i.e., h̄t =

∑
l wlhl,t, is taken,

where wl is a trainable weight coefficient of the lth hidden layer
output. Finally, the hidden vector sequence, h̄ = [h̄1, . . . , h̄T ]

⊤,
is encoded by an aggregation module consisting of a stack of bi-
directional long short-term memory (BLSTM) and multi-head atten-
tion (MHA) layers, and the outputs are then taken to be summed
along the frame direction to obtain a Dz-dimensional fixed-length
speech feature vector z.

The text decoder leverages a pre-trained LLM and generates
the speaking-style caption of the given speech waveform. Similar to
the ClipCap text decoder, it first takes K × Dw prefix embeddings
p = [p⊤

1 , . . . ,p
⊤
K ]⊤ predicted by the mapping network from the

feature vector z, where K and Dw denote the prefix length and the
word embedding dimensionality of the LLM, respectively. Then,

the decoder autoregressively generates the tokens of speaking-style
captions using the prefix embeddings as conditional vectors.

The mapping network projects the speech encoder output z
onto the word embedding space, i.e., prefix embeddings p. It con-
sists of a stack of Transformer layers and K × Dz trainable prefix
constant parameters c = [c⊤1 , . . . , c

⊤
K ]⊤ to retrieve meaningful fea-

ture representation from z through MHA layers.

2.3. Data augmentation by rephrasing sentences using an LLM
Because one speaking style can be described in various ways, auto-
matic speaking-style captioning essentially requires learning a one-
to-many mapping similar to TTS. To mitigate the difficulty, we in-
troduce sentence rephrasing augmentation using an LLM to increase
the diversity of speaking-style captions in the training data. Specif-
ically, we first ask the pre-trained Llama 2-Chat (7B)2 [19], which
is an LLM optimized for dialogue use cases, to generate five sen-
tences from one given sentence on the basis of the following prompt:
“Rewrite the following sentence that describes someone’s style of
speaking in a different way, keeping the meaning of the original de-
scription. Original Description: [subject to be rephrased].” Then,
we select one sentence from the five rephrased sentences on the ba-
sis of their BERTScore [20] values: i.e., we pick on the sentence
with the highest score if the score is higher than 0.80. For instance,
the description “His sound height is normal, but the speed is very
fast, and the volume is very low.” can be rephrased as “Despite his
normal height, his sound is incredibly fast and surprisingly quiet.”

3. EXPERIMENTS

3.1. Dataset
We used PromptSpeech3, which includes natural language instruc-
tions (style prompt) of various speaking styles. This dataset was
constructed for PromptTTS [21] that can synthesize speech in accor-
dance with a style prompt. We used the training subset of Prompt-
Speech real version, which includes 26,588 human-annotated style
prompts of multi-speakers’ speech samples from LibriTTS [22]. We
divided the 26,588 prompts into training (24,953 by 1,113 speak-
ers), development (857 by 40), and test (778 by 38) subsets and
paired them with the corresponding speech samples from LibriTTS.
Although PromptSpeech also includes categorical style factors that
indicate class labels regarding gender, pitch, speed, and volume, we
did not use them to train the captioning models.

2https://huggingface.co/meta-llama/Llama-2-7b-chat
3https://speechresearch.github.io/prompttts



Table 1. Automatic speaking-style captioning results. AM is the aggregation module. B@4, R, M, BS, C, and S denote BLEU@4, ROUGE-
L, METEOR, BERTScore, CIDEr-D, and SPICE scores, respectively. distinct-1/-2 of reference captions are 0.020 and 0.071, respectively.

(a) Results without sentence rephrasing augmentation.

Model Speech encoder B@4↑ R↑ M↑ BS↑ C↑ S↑ distinct-1↑ distinct-2↑
Mel-spectrogram 0.163 0.352 0.320 0.817 2.171 0.273 0.019 0.049

Transformer-based encoder-decoder x-vector 0.096 0.269 0.248 0.799 1.289 0.209 0.015 0.039
WavLM 0.253 0.475 0.456 0.850 3.239 0.419 0.022 0.064

Mel-spectrogram + AM 0.178 0.381 0.357 0.827 2.295 0.316 0.020 0.057
StyleCap w/ GPT-2 (proposed) x-vector 0.085 0.273 0.255 0.800 1.138 0.214 0.013 0.032

WavLM + AM 0.228 0.433 0.410 0.839 2.868 0.370 0.022 0.064
Mel-spectrogram + AM 0.160 0.358 0.332 0.821 2.109 0.295 0.022 0.066

StyleCap w/ Llama 2 (proposed) x-vector 0.076 0.262 0.239 0.799 1.107 0.213 0.016 0.042
WavLM + AM 0.273 0.497 0.469 0.855 3.471 0.434 0.023 0.073

(b) Results with sentence rephrasing augmentation.

Model Speech encoder B@4↑ R↑ M↑ BS↑ C↑ S↑ distinct-1↑ distinct-2↑
Mel-spectrogram 0.140 0.332 0.303 0.814 1.847 0.239 0.018 0.046

Transformer-based encoder-decoder x-vector 0.071 0.244 0.212 0.792 1.046 0.191 0.012 0.027
WavLM 0.246 0.464 0.441 0.848 3.172 0.404 0.021 0.059

Mel-spectrogram + AM 0.164 0.368 0.334 0.822 2.122 0.294 0.021 0.063
StyleCap w/ GPT-2 (proposed) x-vector 0.068 0.260 0.237 0.798 0.895 0.210 0.013 0.033

WavLM + AM 0.239 0.470 0.439 0.848 3.056 0.403 0.022 0.068
Mel-spectrogram + AM 0.165 0.353 0.327 0.818 2.131 0.279 0.024 0.065

StyleCap w/ Llama 2 (proposed) x-vector 0.084 0.259 0.237 0.796 1.157 0.212 0.014 0.034
WavLM + AM 0.279 0.507 0.479 0.857 3.594 0.447 0.027 0.079

3.2. Experimental conditions
As for the speech encoder, we used three types of speech fea-
ture representations: mel-spectrogram, speaker embeddings for
speaker verification, and hidden vectors of a speech SSL model for
the performance comparison. We extracted 80-dimensional mel-
spectrograms from speech waveforms with 10 ms frame shift. We
also used WavLM BASE+4 [23] as the speech SSL model and
extracted weighted-sum representation for each frame. To obtain
a fixed-length vector representation for the mel-spectrogram and
speech SSL model, a stack of 4-layer BLSTMs and MHA with 8
heads was used as an aggregation module. As for the speaker embed-
dings, 512-dimensional x-vectors [24] obtained from the pre-trained
WavLM BASE+ for speaker verification5 was used. As for the text
decoder, we used two types of pre-trained LLMs: GPT-26 [25] and
Llama 2 (7B)7 [19]. The former is the same setting as ClipCap [18],
while the latter can be regarded as the richer one. The numbers
of model parameters for GPT-2 and Llama 2 were 125M and 7B,
respectively. The dimensions of word embeddings for each model
were 768 and 4,096, respectively. The mapping network consisted
of 8-layer Transformer-encoders. The prefix length and dropout
ratio were set to 40 and 0.2, respectively. These parameters were
empirically determined. During the model training, we only trained
the mapping network, the aggregation module in the speech encoder,
and the weight coefficient for each layer in WavLM (i.e., wl) used
in the SSL feature aggregation process. The model parameters of
LLMs and WavLM were frozen. All modules are trained in an end-
to-end manner using the cross entropy loss between the generated
captions and the ground-truth captions. Each model was trained
without sentence rephrasing augmentation at 20 epochs or with the
augmentation at 10 epochs because the augmentation doubles the
data size. The batch size was set to 16.

4https://huggingface.co/microsoft/wavlm-base-plus
5https://huggingface.co/microsoft/wavlm-base-plus-sv
6https://huggingface.co/gpt2
7https://huggingface.co/meta-llama/Llama-2-7b

We also trained a naive Transformer-based encoder-decoder
model as the baseline system. The input features were extracted by
the almost same speech encoder as those explained in the previous
paragraph, but the aggregation module was replaced by an attention
layer to align the lengths of speech features and tokens in a gener-
ated caption. The encoder had 12 encoder blocks. The decoder had
a token embedding layer followed by 6 decoder blocks. We adopted
MHA with 4 heads of 256 dimensions for both encoder and decoder.
The implementation was based on Huggingface Transformers8.

As evaluation metrics for captioning accuracy, we used BLEU [26],
ROUGE-L [27], METEOR [28], BERTScore [20], CIDEr-D [29],
and SPICE [30], between generated and annotated captions referring
to other natural language generation tasks. We also used distinct-1/-
2 [31] to evaluate the diversity of generated captions.

3.3. Experimental results
Table 1(a) shows experimental results without sentence rephrasing
augmentation. First, a performance comparison by the speech en-
coder difference showed WavLM performed the best in this as well
as other speech tasks. On the other hand, x-vectors did not work
well because they were mainly trained to represent speaker char-
acteristics rather than speaking styles such as speech rhythm [32].
In addition, the use of Llama 2 for the text decoder performed bet-
ter than GPT-2 when employing WavLM for the speech encoder,
which demonstrates that leveraging of richer LLM-based text de-
coders is a crucial factor to improve the captioning performance of
StyleCap. On the other hand, Llama 2 did not necessarily improve
the performance when mel-spectrogram was used as the input fea-
ture. One reason for this would be overfitting to the training data.
The word embedding dimension of Llama 2 was 4,096-dimensional
embeddings, which greatly outnumbers that of GPT-2 (768). There-
fore, the speech encoder with the mel-spectrogram input might suf-
fer from the high dimensionality of Llama 2 word embeddings and

8https://huggingface.co/docs/transformers/model_doc/
speech_to_text



Table 2. The accuracy (%) of style factor classifications with em-
bedding for each speech encoder. P, S, and V indicate Pitch, Speed,
and Volume respectively.

Speech encoder Gender P S V Avg.
Mel-spectrogram + AM 93.8 62.1 67.8 54.7 69.6

x-vector 94.0 40.5 44.0 49.4 57.0
WavLM + AM 91.0 61.0 85.2 69.9 76.8

Table 3. Evaluation scores with changing prefix length.
Prefix length 1 2 5 10 40 60

METEOR 0.419 0.437 0.468 0.464 0.479 0.459
BERTScore 0.839 0.845 0.853 0.853 0.857 0.852

result in overfitting. In contrast, WavLM prevented such overfitting
thanks to pre-training using a massive amount of speech data. In
summary, StyleCap employing WavLM and Llama 2 outperformed
naive Transformer-based encoder-decoder models.

Table 1(b) shows experimental results with sentence rephrasing
augmentation. Overall tendencies were similar to the case without
the augmentation. We can see that sentence rephrasing augmenta-
tion can improve the captioning performance of StyleCap employ-
ing WavLM. In other words, sentence rephrasing augmentation can
make StyleCap to generate more diverse and accurate speaking-style
captions, as shown in the improved distinct-1/-2 and other captioning
results. These results indicate that sentence rephrasing augmentation
is effective to deal with the difficulty of speaking-style captioning,
i.e., learning one-to-many mapping. In contrast, the performance of
Transformer-based encoder-decoder models could not be improved.

3.4. Discussion
3.4.1. Analysis of StyleCap behavior
To further understand the methods, we performed analysis from two
aspects: the property of fixed-length vectors extracted by the speech
encoders and the captioning performance from the vectors.

We first performed style factor classification using the learned
fixed-length vectors. As described in Sect. 3.1, PromptSpeech also
includes class labels indicating four style factors: gender, pitch,
speed, and volume. The numbers of class labels for gender and the
others are two (male/female), and three (low/mid/high), respectively.
We trained a simple linear layer to classify the four style factors from
a fixed-length vector extracted by the speech encoder of each trained
StyleCap. In this analysis, trained StyleCap employing Llama 2 for
the text decoder and sentence rephrasing augmentation for the train-
ing were used. Table 2 lists the classification accuracy. We can see
that all speech encoders can classify each style factor to some ex-
tent. This implies that StyleCap can acquire speaking-style-related
information from speech with natural language descriptions only. In
other words, such information can be obtained without class labels
indicating style factors. Comparing the speech encoders, WavLM
achieved the highest classification performance, while x-vector
could not capture para-linguistic information except for gender.
Similar tendency was also reported in the previous work [32].

We next analyzed the relationship between the captioning per-
formance and the fixed-length vector extracted by the speech en-
coder employing WavLM. Fig. 3 shows the violin plot of METEOR
aggregated by the style factor classification performance (i.e., the
number of correct predictions from 1 to 4)9 described in the pre-
vious paragraph. From the results, we can see that the captioning

9We did not observe the complete misclassification whose number of cor-
rect predictions was 0 in the experiments.
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Fig. 3. Violin plot of METEOR by the performance of style factor
classifications.

performance strongly depends on the style factor classification per-
formance. Especially, the misclassification of even one factor can
considerably degrade the captioning performance. Similar tenden-
cies were also found in terms of other metrics such as BERTScore.
These results indicate that capturing adequate para-/non-linguistic
information by the speech encoder is an essential factor to further
improve performance. Although WavLM and the simple aggrega-
tion module were used in this paper, another possible approach is to
use CLAP [11], [15] trained from various para-/non-linguistic infor-
mation.

3.4.2. Ablation study for mapping network
We finally performed an ablation study for the mapping network. To
investigate the performance by changing the prefix length (K) of the
mapping network, we set the prefix length to 1, 2, 5, 10, 40, and
60, respectively. In this experiment, StyleCap employing WavLM,
Llama 2, and sentence rephrasing augmentation was used. Table 3
shows METEOR and BERTScore only by changing the prefix length
due to the space limitation. As we can see, the performance is get-
ting better with the longer prefix length. The shorter prefix lengths,
especially 1 and 2, tends to worsen the performances because the
number of trainable model parameters are limited. In addition, the
too longer prefix also degrades the performance due to overfitting to
training data. These tendencies were similar to ClipCap [18].

4. CONCLUSIONS

In this paper, we proposed StyleCap, a method to generate natural
language descriptions of speaking styles appearing in speech, which
we call the automatic speaking-style captioning task. As a first step
to this end, we explored an appropriate large language model (LLM)-
based text decoder and speech feature representation suitable for this
task. The experimental results demonstrated that our StyleCap lever-
aging richer LLMs for the text decoder, speech self-supervised learn-
ing (SSL) features, and sentence rephrasing augmentation improved
the accuracy and diversity of generated speaking-style captions. Al-
though this paper focused on speaking styles appearing in speech,
we believe that the proposed approach will be easily applicable for
other para-/non-linguistic information such as emotional states and
mental illnesses. Applying it to such information, which includes
constructing pairs of speech and natural language descriptions, is for
future work. We will also explore more suitable evaluation metrics
for this task to growth the research area regarding the speaking style
captioning. The evaluation metric using a larger LLM [33] including
the prompt engineering for each task would be a possible approach.
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