SLP-P15.4 StyleCap: Automatic Speaking-Style Captioning from Speech **Based on Speech and Language Self-supervised Learning Models**

Kazuki Yamauchi*, Yusuke Ijima[†], Yuki Saito* *The University of Tokyo, Japan, [†]NTT Corporation, Japan

Contributions: speaking-style captioning and StyleCap

• Contribution 1: new task, speaking-style captioning Describe *speaking-style* in speech in natural language 0 • Go beyond the limitations by pre-defined discrete labels

- Related works: para-/non-linguistic information recognition
 - Classify speech into **pre-defined categories** 0
 - Desire Human-interpretable reasoning 0

- Contribution 2: speaking-style captioning model, StyleCap
 - o Leverage speech and language SSL models
 - o Introduce LLM-based data augmentation by sentence rephrasing

- Related works: image/audio captioning
 - Describe *content* information in natural language
 - o e.g. **ClipCap** [1], leveraging SSL for image captioning

Method: StyleCap, leveraging SSL models and LLM-based data augmentation

DNN architecture of StyleCap

- SSL-based speech encoder
 - o Compress SSL features into a fixed-length vector using AM
- Q-former-based mapping network
 - Map the fixed-length vector to the word embedding space
- LLM-based text decoder
 - Generate a caption from the mapping network output by LLM 0 **Aggregation Module (AM)**

Data augmentation by sentence rephrasing

- Challenge: one-to-many problem of style prediction
 - Not uniquely determined descriptions to express speaking-style
 - → Data augmentation by sentence rephrasing using LLM to increase the diversity of description
- Problem: change in meaning due to rephrasing error by LLM \rightarrow Filtering by BERTScore [2] to select appropriate candidates
- Example of rephrasing:

His sound height is normal, but the speed is very fast, and the volume is very low.

Rephrased by LLM (Llama 2-Chat 7B model [3])

Despite his normal height, his sound is incredibly fast and surprisingly quiet.

Experimental evaluation

Experimental conditions

- Dataset: PromptSpeech [4]
 - Various (speech, style prompt) pairs of data 0
 - Speech in LibriTTS corpus [5] annotated with style prompt 0
 - Style factor: gender, pitch, speed, volume Ο
 - Various speakers/utterances: 1,191/26,588 0
- Model configuration of StyleCap
 - Speech encoder: WavLM BASE+ [6] / mel-spec. / x-vector [7] 0
 - Mapping network: Transformer encoder x 8 0
 - Text decoder: GPT-2 (125M params) [8] / Llama 2 (7B params) 0

Experimental results

Metrics: METEOR [9] (M), BERTScore (BS), Distinct-1 [10] (D1)

w/o Sentence Rephrasing w/ Sentence Rephrasing

Speech encoder	Text decoder	M(↑)	BS(↑)	D1(↑)	M(↑)	BS(↑)	D1(↑)
Mel-spec. + AM	GPT-2	0.357	0.827	0.020	0.334	0.822	0.021
x-vec.	GPT-2	0.255	0.800	0.013	0.237	0.798	0.013
WavLM + AM	GPT-2	0.410	0.839	0.022	0.439	0.848	0.022
Mel-spec. + AM	Llama 2	0.332	0.821	0.022	0.327	0.818	0.024
x-vec.	Llama 2	0.239	0.799	0.016	0.237	0.769	0.014
WavLM + AM	Llama 2	0.469	0.855	0.023	0.479	0.857	0.027

Analysis of StyleCap behavior

- Style factor classification
 - o Predict style factors from each trained speech encoder output
 - 2 classes for gender (male/female)
 - 3 classes for pitch, speed, volume (low/mid/high)

Speech encoder	gender	pitch	speed	volume	Ave.
Mel-spec. + AM	93.8	62.1	67.8	54.7	<u>69.6</u>
x-vec.	94.0	40.5	44.0	49.4	<u>57.0</u>
WavLM + AM	91.0	61.0	85.2	69.9	<u>76.8</u>

Classification performance: WavLM + AM > others

- Speech encoder validity: WavLM + AM > others
- Text decoder validity: Llama 2 > GPT-2
- **Sentence Rephrasing: Improved diversity in particular**

Overview of style factor classification

ICASSP 2024

Number of correct predictions

METEOR score tends to degrade

• METEOR distribution by the number of correct • Captioning performance (i.e., METEOR score) degrades as the number of correct predictions **decreases**

the speech encoder is an essential factor

Future direction

Adapt to other para-/non-linguistic information (e.g. emotion) Dataset construction for more diverse speaking-style caption Acknowledgments: This work was supported by JST, ACT-X Grant Number JPMJAX23CB, Japan.

Reference

[1] R. Mokady et al., arXiv preprint arXiv: 2111.09734, 2021. [2] T. Zhang et al., in Proc. ICLR, 2020. [3] H. Touvron et al., arXiv preprint arXiv:2307.09288, 2023. [4] Z. Guo et al., in Proc. ICASSP, 2023. [5] H. Zen et al., in Proc. INTERSPEECH, 2019. [6] S. Chen et al., IEEE JSTSP, 2022. [7] D. Snyder et al., in Proc. ICASSP, 2018. [8] A. Radford et al., 2019. [9] S. Banerjee et al., in Proc. ACL, 2005. [10] J. Li et al., in Proc. ACL, 2016.

Saruwatari Lab., The University of Tokyo, Japan, NTT Corporation, Japan.

©Kazuki Yamauchi, Apr. 2024.