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StyleCap: Automatic Speaking-Style Captioning from Speech
Based on Speech and Language Self-supervised Learning Models

SLP-P15.4

● Contribution 2: speaking-style captioning model, StyleCap
○ Leverage speech and language SSL models
○ Introduce LLM-based data augmentation by sentence rephrasing

● Related works: image/audio captioning
○ Describe content information in natural language
○ e.g. ClipCap [1], leveraging SSL for image captioning

● Style factor classification
○ Predict style factors from each trained speech encoder output

■ 2 classes for gender (male/female)
■ 3 classes for pitch, speed, volume (low/mid/high)

● METEOR distribution by the number of correct
○ Captioning performance (i.e., METEOR score) degrades as 

the number of correct predictions decreases
→ Capturing adequate para-/non-linguistic information by  
     the speech encoder is an essential factor

Method: StyleCap, leveraging SSL models and LLM-based data augmentation 
DNN architecture of StyleCap
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Contributions: speaking-style captioning and StyleCap

Experimental evaluation

Data augmentation by sentence rephrasing

Demo page

● SSL-based speech encoder
○ Compress SSL features into a fixed-length vector using AM

● Q-former-based mapping network
○ Map the fixed-length vector to the word embedding space

● LLM-based text decoder
○ Generate a caption from the mapping network output by LLM

● Contribution 1: new task, speaking-style captioning 
○ Describe speaking-style in speech in natural language
○ Go beyond the limitations by pre-defined discrete labels

● Related works: para-/non-linguistic information recognition
○ Classify speech into pre-defined categories
○ Desire Human-interpretable reasoning

  

Speaking-style
captioning model e.g. “His voice is very loud,

but the tone is very low.”

Speaking-style caption

● Challenge: one-to-many problem of style prediction
○ Not uniquely determined descriptions to express speaking-style

    → Data augmentation by sentence rephrasing using LLM to    
        increase the diversity of description
● Problem: change in meaning due to rephrasing error by LLM
    → Filtering by BERTScore [2] to select appropriate candidates
● Example of rephrasing:
    His sound height is normal, but the speed is very fast, and the volume is very low.  
                      ↓ Rephrased by LLM (Llama 2-Chat 7B model [3])
    Despite his normal height, his sound is incredibly fast and surprisingly quiet. 

● Dataset: PromptSpeech [4]
○ Various (speech, style prompt) pairs of data
○ Speech in LibriTTS corpus [5] annotated with style prompt
○ Style factor: gender, pitch, speed, volume
○ Various speakers/utterances: 1,191/26,588

● Model configuration of StyleCap
○ Speech encoder: WavLM BASE+ [6] / mel-spec. / x-vector [7]
○ Mapping network: Transformer encoder x 8
○ Text decoder: GPT-2 (125M params) [8] / Llama 2 (7B params)

Analysis of StyleCap behavior

Ave.volumespeedpitchgenderSpeech encoder

69.654.767.862.193.8Mel-spec. + AM
57.049.444.040.594.0x-vec.
76.869.985.261.091.0WavLM + AM

● Metrics: METEOR [9] (M), BERTScore (BS), Distinct-1 [10] (D1) 

1. Speech encoder validity: WavLM + AM > others
2. Text decoder validity: Llama 2 > GPT-2
3. Sentence Rephrasing: Improved diversity in particular

Future direction
● Adapt to other para-/non-linguistic information (e.g. emotion) ● Dataset construction for more diverse speaking-style caption
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D1(↑)BS(↑)M(↑)D1(↑)BS(↑)M(↑)Text decoderSpeech encoder

0.0210.8220.3340.0200.8270.357GPT-2Mel-spec. + AM
0.0130.7980.2370.0130.8000.255GPT-2x-vec.
0.0220.8480.4390.0220.8390.410GPT-2WavLM + AM
0.0240.8180.3270.0220.8210.332Llama 2Mel-spec. + AM
0.0140.7690.2370.0160.7990.239Llama 2x-vec.
0.0270.8570.4790.0230.8550.469Llama 2WavLM + AM

w/o Sentence Rephrasing w/ Sentence Rephrasing

Overview of style factor classification
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METEOR score tends to degrade

○ Classification performance: WavLM + AM > others
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Select the sentence with the highest 
BERTScore to the original

Candidate 1: BERTScore 0.81
Candidate 2: BERTScore 0.86
Candidate 3: BERTScore 0.75
Candidate 4: BERTScore 0.91
Candidate 5: BERTScore 0.79
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