Speech samples

Noise-Robust Voice Conversion by Conditional Denoising Training Using Latent Variables of Recording Quality and Environment

¹Takuto Igarashi, ¹Yuki Saito, ¹Kentaro Seki, ^{1,2}Shinnosuke Takamichi, ³Ryuichi Yamamoto, ³Kentaro Tachibana, ¹Hiroshi Saruwatari ¹The University of Tokyo, Japan, ²Keio University, Japan, ³LY Corp., Japan.

CDT: Conditional Denoising Training

- Noise-robust VC conditioning the VC model on speech degradation information: recording quality and environment
- Two conditioning strategies: utterance-wise and frame-wise
- Conditioning frame-wise features is essential for noise-robust VC

1. Background

3.3 Frame-wise conditioning

- NISQA and PaSST are originally designed to output an <u>utterance-wise</u> (uw) prediction: MOS and audio tag
- For conditioning a VC model, <u>frame-wise</u> (fw) features reflecting the noise's non-stationarity are essential; obtained as follows
- 4 proposed CDT methods: xxNISQA-xxPaSST (xx=uw or fw)

- VC: converting a source speaker's timbre to that of a target speaker while preserving the linguistic content
- DNN-based VC: training DNNs for VC w/ multi-speaker corpus
- Noise-Robust VC^[1]: performing well even if the input speech is degraded due to recording environment/channel
- Denoising Training^[1] (DT): an end-to-end learning method for noisy-to-clean VC with noisy data augmentations

2. Conventional DT

2.1. DT algorithm

- 1. Generate pseudo-noisy speech by adding various noises to clean speech
- with random SNRs and feed it into the VC model
- 2. Compute norm between the clean and converted speech

Huang et al.^[1] showed that DT improved VC's noise-robustness when autoencoder-based VC models were used like S2VC^[2]

2.2. Limitations

4. Experimental evaluation

4.1. Experimental conditions

Corpus: JVS^[5] containing 22 hrs speech for 100 Japanese speakers

• The naturalness of the converted speech is still limited when the noise of the input speech is unseen during the training.

3. Proposed CDT

3.1. Motivation

• Make sure that the VC model explicitly learns information about speech degradation such as noise characteristics and levels

3.2 CDT algorithm

Condition the VC model on speech degradation information: recording quality, environment extracted by NISQA^[3], PaSST^[4]

- NISQA: automatically estimating recording quality scores
- PaSST: obtaining audio tags from input sounds

Noise: DEMAND^[6] for training and WHAM!^[7] for test w/ [0,20]dB

• Unify the size of latent variables and concat them as follows

4.2. Objective evaluation

VC on 250 test pairs of source and target speech samples

- CER: Character Error Rate showing intelligibility
- SECS: Speaker Embedding Cosine Similarity showing

Met	hod	CER[%]	SECS	
NISQA	Passi			
_	_	26.3	0.935	
uw	uw	27.2	0.938	
uw	fw	24.6	0.935	
fw	uw	24.7	0.931	
fw	fw	23.3	0.934	

speaker similarity between source and target

4.3. Subjective evalution

MOS test: naturalness

Method

References

[1] C.-Y. Huang et al., 2022. [2] J. Lin et al., 2021. [3] B. Mittag et al., 2021. [4] K. Koutini et al., 2022. [5] S. Takamichi et al., 2020. [6] J. Thiemann et al., 2013. [7] G. Wichern et al., 2019.

			NIa+	Cia
How good is the perceptual quality	NISQA	PaSST	Ndl.	SIM.
of the presented VC sample?	-	-	2.75	2.43
	uw	uw	2.67	2.39
vios test: simiarity	uw	fw	2.84	2.50
How similar the speakers were who	fw	uw	2.74	2.43
produced the target and VC sample?	fw	fw	2.85	2.47
AB test: natunalness			1	
	A vs B		Nat.	
Q Which is the natural VC sample, A or B?	DT vs uw-fw		0.414 vs 0.586	
	DT vs fw-fw		0.442 vs 0.558	
	uw-fw vs fw-fw		0.514 vs 0.486	
Conditioning on frame-wise features	is effecti	ve;		
they represent the non-stationary ch	naracteris	tics		
of noise in the noisy source speech				