Wed-O-OS-7-1 INTERSPEECH2022 Presentation Acoustic Modeling for End-to-End Empathetic Dialogue Speech Synthesis Using Linguistic and Prosodic Contexts of Dialogue History

Yuki

Saito¹

Shinnosuke Takamichi¹

Kentaro

Tachibana²

Hiroshi Saruwatari¹

Yuto

Table of contents

- 1. Introduction
- 2. Conventional method
- 3. Proposed method
- 4. Experimental evaluation
- 5. Conclusion

Table of contents

1. Introduction

- 2. Conventional method
- **3. Proposed method**
- 4. Experimental evaluation
- **5. Conclusion**

Main topic: dialogue system with empathy

- **Dialogue system:** interact w/ humans by text/speech
 - **Task-oriented**: satisfy user's requrest
 - e.g., Tourist information, restaurant reservation
 - Non task-oriented: communicate with user
 - e.g., Chit-Chat
- Empathy: active attempt to get inside other person [Davis+18]
 c.f., Sympathy: synchronize self with other person in emotion

How can we develop dialogue system that can talk to users w/ empathetic speaking style?

Task definition

- Empathetic Dialogue Speech Synthesis (DSS) [Saito+22]
 - Reflect main elements of empathy (i.e., emotion) on synthetic speech
 - Estimate speech features that contribute to next response, considering dialogue history (interaction betw. system & user)

- Challanging point
 - Predicting dialogue context from linguistic & prosodic features (i.e., modeling cross-modality of text & speech)

Overview of our research

- **Conventional DSS method:** using text history only [Guo+20]
 - Learn dialogue context from text embeddings of dialogue history
 - Limitation: missing speech modality modeling
- **Proposed DSS method:** using both text & speech history
 - Extract prosody embedding from speech & aggregate two modality
 - Investigate 4 methods for better dialogue context modeling:
 1) pre-trained speech SSL* model, 2) style-guided training,
 3) cross-modal attention, 4) fine-grained embedding modeling

• Result: more natural DSS than conventional method

Table of contents

1. Introduction

2. Conventional method

- 3. Proposed method
- 4. Experimental evaluation
- 5. Conclusion

Conventional DSS method [Guo+20]

- **Overview:** E2E TTS w/ Conversational Context Encoder (CCE)
 - Step 1: obtain text embeddings using sentence BERT
 - Step 2: extract context embedding from chat history w/ CCE

Guo+20

Content

1. Introduction

- 2. Conventional method
- **3. Proposed method**
- 4. Experimental evaluation
- 5. Conclusion

Motivation

- One-to-many problem in TTS
 - e.g., "What's wrong?" w/ various speech prosody

- Research questions
 - RQ1: Can we extract better dialogue context from chat history by considering BOTH text & speech?
 - RQ2: How can we learn the cross-modality of text & speech effectively, rather than processing them independently?

Overview of proposed method

- Architecture: FS2-based TTS model w/ Cross-Modal (CM)CCE
 - CMCCE: extracting context embedding from text/speech seqs.
 - 4 methods for better context embedding extraction

CMCCE w/ prosody predictor

• Main components

- Sentence BERT for text embedding extraction
- **Prosody predictor** for prosody embedding extraction

Cross-modal attention

- How to compress past information of dialogue history
 - Guo et al.'s [Guo+20]: bi-directional Gated Recurrent Unit (GRU)
 - Ours: attention using embedding of current text as query

Style-guided context embedding learning

- Core idea: Cong et al's method [Cong+21]
 - Associating context embedding with current prosody embedding

Fine-grained context embedding modeling

• Unit of embedding modeling

- Guo et al.'s [Guo+20]: utterance-wise
 - Cannot model change of prosodic variation within one utterance
- Ours: **sentence**-wise
 - Divide current utterance into sentences by punctuation symbols
 - Extract text/prosody embedding for each sentence
 - Predict sentence-wise context embedding from extracted embeddings using CMCCE

Content

1. Introduction

- 2. Conventional method
- **3. Proposed method**

4. Experimental evaluation

5. Conclusion

Experimental conditions

Subjective evaluation	 SG: style-guided embedding learning FG: fine-grained context modeling Stage 1: Pairwise comparison (AB/XAB tests) 		
Compared methods	 Baseline: FS2 + CCE (Guo et al's method [Guo+20]) Proposed: FS2 + CMCCE SSL: pretrained SSL model as prosody extractor Attn: attention for cross-modal aggregation 		
Dialogue history length	10 (same setting as [Guo+20])		
TTS model (w/o teacher forcing)	Text2Mel: FastSpeech 2 (FS2) [Ren+21] Vocoder: HiFi-GAN [Kong+20]		
Data splitting	{ Training, Validation, Test } = { 2,209, 221, 211 }		
Corpus	STUDIES [Saito+22] (downsampled to 22,050 Hz)		

Results of preference AB/XAB tests

- w/o SSL
 - Significant improvement by:
 - +SG
 - +SG+Attn and +SG+FG

	Naturalnass	Cimilarity	Proposed (w/o SSL)			
Baseline	Inaturainess	Similarity	SG	Attn	FG	
	0.45 vs. 0.55	0.54 vs. 0.46				
	0.44 vs. 0.56	0.53 vs. 0.47	\checkmark			
	0.50 vs. 0.50	0.54 vs. 0.46		\checkmark		
	0.48 vs. 0.52	0.54 vs. 0.46			\checkmark	
	0.43 vs. 0.57	0.47 vs. 0.53	\checkmark	\checkmark	A	
	0.45 vs. 0.55	0.45 vs. 0.55	\checkmark		\checkmark	

 \rightarrow SG was effective in training for CMCCE w/ prosody predictor.

w/ SSL	Baseline	Naturalness	Similarity	Prope SG	osed (w/ Attn	SSL) FG
 Significant improvement by: +Attn +SG+Attn 		0.50 vs. 0.50 0.53 vs. 0.47 0.51 vs. 0.49 0.52 vs. 0.48 0.43 vs. 0.57 0.46 vs. 0.54	0.61 vs. 0.39 0.46 vs. 0.54 0.44 vs. 0.56 0.50 vs. 0.50 0.50 vs. 0.50 0.50 vs. 0.50 0.54 vs. 0.46	✓ ✓	✓ ✓ ✓	✓ ✓
		49 3				

 \rightarrow Attn aggregated SSL-derived prosody & text embeddings.

• Fewer cases w/ improvement, compared with w/o SSL results

Results of MOS test

• Compared methods: Baseline vs. Proposed (w/o SSL)

- +SG+FG (best combination)
- +SG, +FG (ablation)
- +SG+Attn+FG (bonus)
- Summary of results
 - +SG+SG achieved the highest MOS.
 - No significant difference betw. Baseline & Proposed...
 - +SG+Attn+FG did not improve the naturalness.
 - Richer model \rightarrow more difficult training?

	Met	hod	Naturalness MOS
Pr	oposed	(w/o SSL)	
SC	G Att	n FG	
			3.59±0.10
\checkmark			3.62 ± 0.10
		\checkmark	$3.59 {\pm} 0.10$
\checkmark		\checkmark	3.66 ± 0.10
\checkmark	 ✓ 	\checkmark	3.55 ± 0.10
	Base	eline	3.55 ± 0.10

Content

1. Introduction

- 2. Conventional method
- 3. Proposed method
- 4. Experimental evaluation
- **5. Conclusion**

Conclusion

- Purpose: development of more natural voice agent
 - Control speaking style according to user's emotion w/ empathy
- This talk: modeling dialogue context from text/speech history
 - Extract prosody embedding from speech & aggregate two modality
 - Investigate 4 methods for better dialogue context modeling:
 1) pre-trained SSL* model, 2) style-guided training,
 3) cross-modal attention, 4) fine-grained embedding modeling
- Result: more natural DSS than conventional method
- Future work: (semi-)supervised learning using emotion label