




# SRC4VC: Smartphone-Recorded Corpus for Voice Conversion Benchmark

<sup>1</sup>Yuki Saito, <sup>1</sup>Takuto Igarashi, <sup>1</sup>Kentaro Seki, <sup>1,2</sup>Shinnosuke Takamichi, <sup>3</sup>Ryuichi Yamamoto, <sup>3</sup>Kentaro Tachibana, <sup>1</sup>Hiroshi Saruwatari <sup>1</sup>The University of Tokyo, Japan, <sup>2</sup>Keio University, Japan, <sup>3</sup>LY Corp., Japan.

## SRC4VC: New JP Corpus for VC



- 11h of smartphone-recorded speech samples by 100 speakers
- Various styles: read-aloud, expressive, conversational, singing
- Easy way to validate any-to-any VC systems using devicerecorded (& degraded) voice by users as the source speech

## 1. Background Hello! Q - VC - W G Hello!









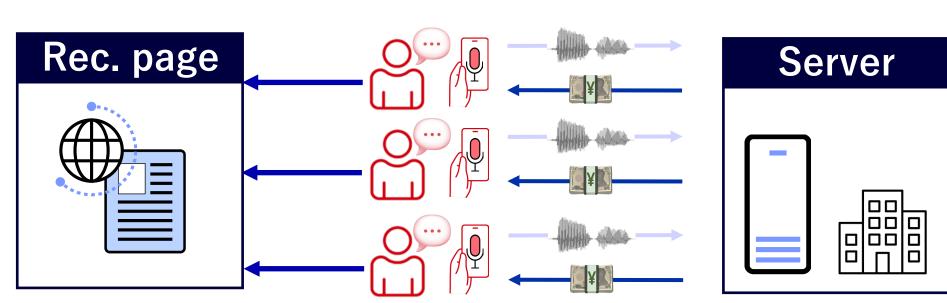


- DNN-based VC: training DNNs for VC w/ multi-speaker corpus
- Degradation-Robust (DR)VC<sup>[1]</sup>: performing well even if the input speech is degraded due to recording environment/channel Goal: promoting DRVC study by the construction of SRC4VC

## 2. Construction of SRC4VC

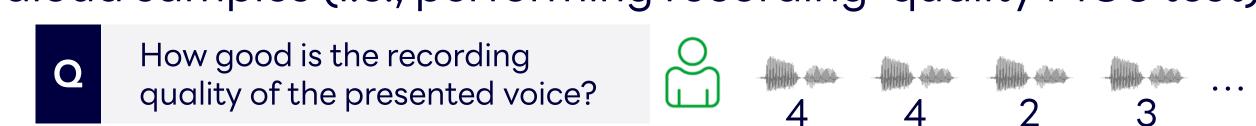


### 2.1. Core design


SRC4VC aims to advance various VC tasks (e.g., emotional VC<sup>[2]</sup>) and includes the following four subsets:

- Read-aloud :: 10 phoneme-balanced sentences from ITA<sup>[3]</sup>
- Expressive 😀 😭 귮: 5 sentences for each of 6 emotions (Angry, Disgust, Fear, Happy, Sadness, Surprise) from JVNV<sup>[4]</sup>
- **Conversational** : 10 situation-oriented dialogues from STUDIES<sup>[5]</sup> (teacher-student) & CALLS<sup>[6]</sup> (operator-customer)
- Singing 1: 2 Japanese copyright-free songs ("katatsumuri" = child-song & "Shining star" = J-POP)

## 2.2. Voice recording by crowdworkers 🛗 🛗 🖰




- 1. Preparing a webpage containing the recording instruction, start/stop button, and text w/ pronunciation
- 2. Recruiting speakers through crowdsourcing (Lancers)
- 3. Asking the recruited speakers to record their voice samples using smartphones in a quiet room as possible



# 2.3. Annotation by crowdworkers

• Speaker-wise recording quality: recruiting 400 annotators who rated recording-quality of randomly presented 25 readaloud samples (i.e., performing recording-quality MOS test)



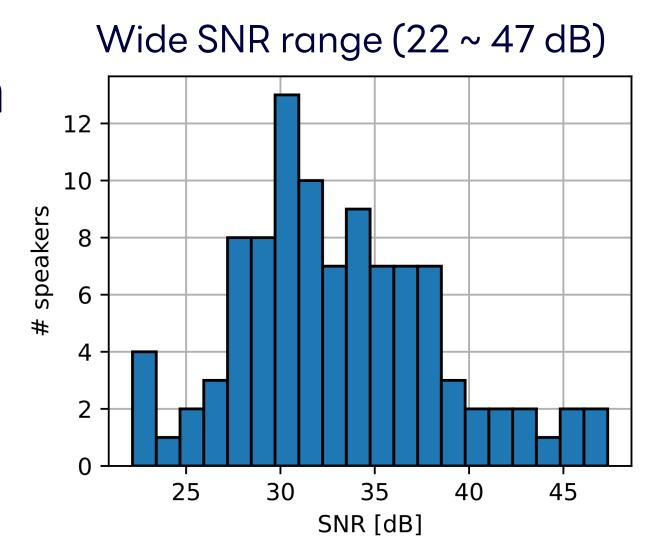
• Utterance-wise perceived emotion: recruiting 500 annotators who labeled emotion for each of "Expressive" & "Conversational" samples (5 annotations per sample)



#### References

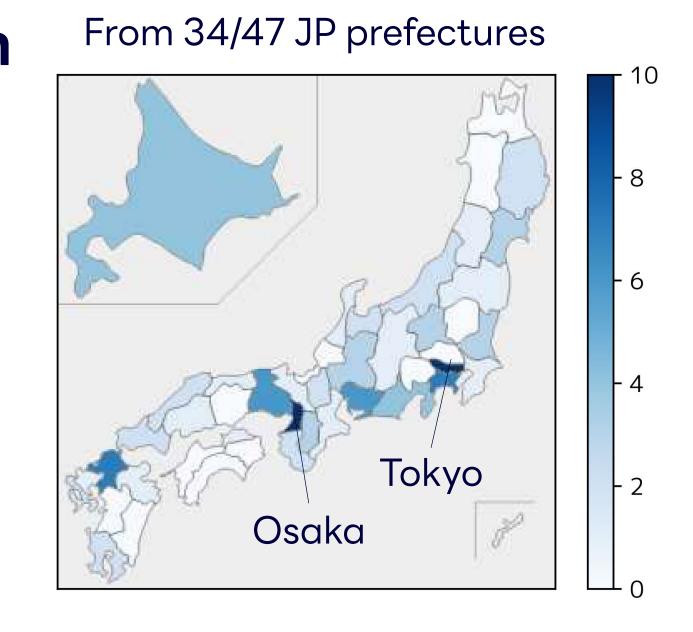
[1] C.-Y. Huang et al., 2022. [5] Y. Saito et al., 2022. [9] S. Takamichi et al., 2020. [13] J. Kong et al., 2020. © LY Corporation

[2] K. Zhou et al., 2022. [6] Y. Saito et al., 2023. [10] S. Takamichi et al., 2018.


[3] J. Koguchi et al., 2021. [7] J. Yamagishi et al., 2019. [11] G. Mittag et al., 2021.

[4] D. Xin et al., 2024. [8] H. Li et al., 2022. [12] J. Lin et al., 2021.

# 3. Corpus Analysis Q


### 3.1. Corpus specification

| Subset         | # samples | Hours |
|----------------|-----------|-------|
| Read-aloud     | 1,000     | 1.46  |
| Expressive     | 3,000     | 7.16  |
| Conversational | 1,000     | 1.66  |
| Singing        | 200       | 0.87  |
| Total          | 5,200     | 11.14 |



#### 3.2. Speaker distribution

37 males & 63 females of various ages (21 ~ 68) **Female** of speakers



### 3.3. Comparison w/ existing corpora

| Corpus               | # styles | Lang. | Dur. [h] | # spkrs. | Recording  |
|----------------------|----------|-------|----------|----------|------------|
| VCTK <sup>[7]</sup>  | 1        | EN    | 44       | 109      | Studio     |
| DDS <sup>[8]</sup>   | 1        | EN    | 2,000    | 48       | Device     |
| JVS <sup>[9]</sup>   | 3        | JP    | 30       | 100      | Studio     |
| CPJD <sup>[10]</sup> | 1        | JP    | 7        | 22       | Device     |
| SRC4VC               | 4        | JP    | 11       | 100      | Smartphone |

#### 3.4. Annotation results

Spearman's Rank Correlation Coefficient (SRCC) between human-annotated recording-quality MOS & each NISQA score[11]

| 1 | Voisiness | Coloration | Discontinuity | Loudness | Naturalness |
|---|-----------|------------|---------------|----------|-------------|
|   | 0.15      | 0.67       | 0.62          | 0.36     | 0.54        |

Due to frequency response & non-linear distortion

% of agreed emotional samples (see below for the definition)

| Subset                | Ang  | Dis  | Fea     | Нар       | Sad      | Sur             | Neu     |
|-----------------------|------|------|---------|-----------|----------|-----------------|---------|
|                       | 14.6 | 17.8 | 14.4    | 16.7      | 15.7     | 17.3            | 0.35    |
| <b>\$</b> \(\dagger\) | 0.45 | 0.29 | 0.08    | 0.59      | 0.56     | 0.28            | 1.08    |
|                       |      |      | ) →(Ang | g, Ang, A | ng, Ang, | Hap) <b>→</b> ( | Agreed: |

# 4. Any-to-Any VC Experiment

#### 4.1. Setup (see our paper for the details)

- Baseline VC model: S2VC<sup>[12]</sup> + HiFi-GAN vocoder<sup>[13]</sup> (following the same setup as existing DRVC study<sup>[1]</sup>)
- Data: JVS for training, SRC4VC for evaluation

### 4.2. Naturalness/similarity MOS tests

(30 samples/listener) Training the Baseline w/ Data Augmentation

Cascading the Baseline w/

Speech Enhancement

# listeners: 200 for each

| Method                          | Nat. | Sim  |
|---------------------------------|------|------|
| Baseline (B)                    | 2.54 | 2.17 |
| B+DA (noise)                    | 2.59 | 2.18 |
| B+DA (reverb)                   | 2.66 | 2.22 |
| B+DA (band)                     | 2.62 | 2.17 |
| B+SE (Demucs <sup>[14]</sup> )  | 2.53 | 2.17 |
| B+SE (Miipher <sup>[15]</sup> ) | 2.74 | 2.2  |