Mon-A7-O1 INTERSPEECH2024 Oral Session (Speech Synthesis: Voice Conversion 1)

Spatial Voice Conversion: Voice Conversion Preserving Spatial Information and Non-target Signals

Kentaro Seki¹

Shinnosuke

Takamichi^{1,2}

Yuki

Saito¹

Kanami

Imamura¹

Hiroshi Saruwatari¹

1: The University of Tokyo, Japan / 2: Keio University, Japan

Overview of This Talk

- We propose a new task: Spatial Voice Conversion (Spatial VC)
 - VC preserving <u>spatial Information</u> and <u>non-target signals</u>

- We propose a baseline method for spatia VC
 - **Combining BSS and VC** (BSS: blind source separation)

- We identify key challenges inherent in Spatial VC
 - Preserving spatial information may degrade audio quality

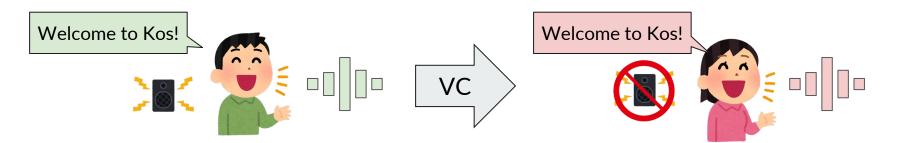
Outline

1. Background

- 2. Problem description
- 3. Method
- 4. Experimental results and Analysis

Background: Voice Conversion (VC)

- Convert speech to another speaker's speech (same linguistic content)
- Conventional studies tend to ...
 - Deal with monaural signal (single channel)
 - Remove non-target audio (e.g., background noise) [1]



Background: Human Hearing

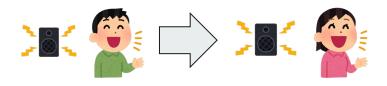
- **Stereo** hearing (not monaural)
 - Recognize **spatial information** (e.g., direction of the speaker)
- Even while focusing on a specific speech, other signals are still processed
 - For example, if an accident happens, we can recognize it
 - Non-target signals should not always be removed

Recognize spatial information

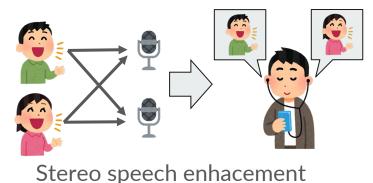
Process non-target signals

Related works

- Example 1: Noisy-to-noisy VC [2]
 - Preserve noise in input signal (not removed)
- Example 2: Stereo speech enhancement preserving spatial-cue [3]
 - Apply speech enhancement to two speakers's mixed speech
 - Output left speaker's speech to left-ch (maintain spatial cue)
- These studied are based on spatial information and non-target signals



Noisy-to-noisy VC



Outline

- 1. Background
- 2. Problem description
- 3. Method
- 4. Experimental results and Analysis

Goal: Spatial VC enables

• Talk with virtual avatar in **Mixed Reality** (MR)

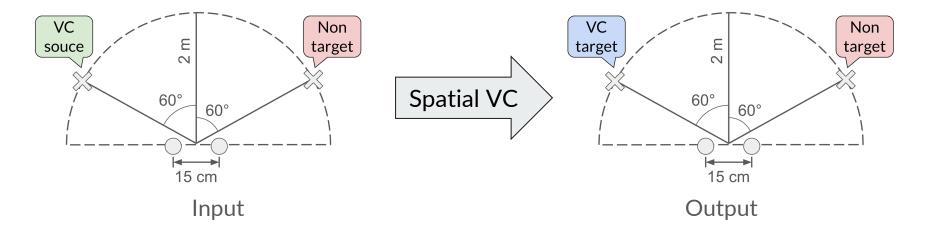
Real world



Mixed Reality

Task Description

- Input: Recording of mixed speech (VC source + non target)
 - Multi-channel signal (containing spatial information)
- **Output**: Recording of mixed speech (VC target + non target)



Problem Formulation

• Input: Sum of VC source speech and non-target signals

$$y_j(t) = h_{1j}(t) * x_1(t) + \sum_{i=2}^N h_{ij}(t) * x_i(t) \quad (j = 1, ..., N)$$

- $x_1(t)$: VC source speech, $x_2(t), ..., x_N(t)$: Non-target signals
- $h_{ij}(t)$: Transfer function from i-th source to j-th microphone
- Output: Applying VC exclusively to VC source speech

$$z_j(t) = h_{1j}(t) * \operatorname{VC}[x_1(t)] + \sum_{i=2}^N h_{ij}(t) * x_i(t) \quad (j = 1, ..., N)$$

o $VC[\cdot]$: Voice Conversion

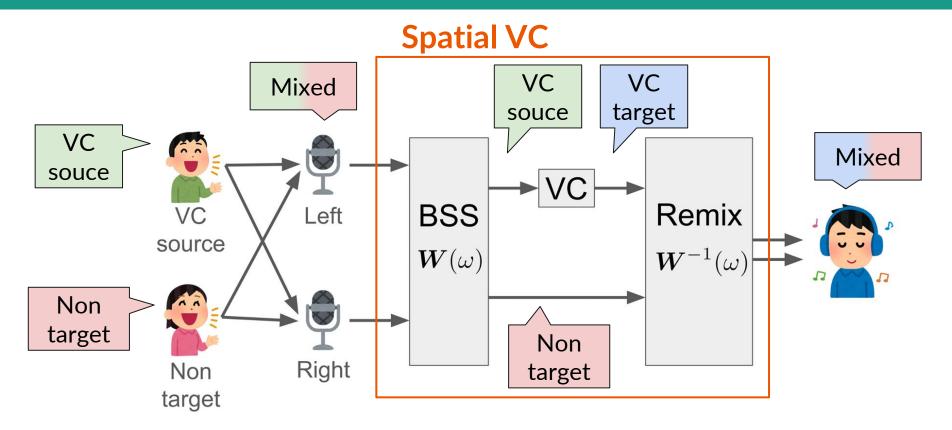
Outline

- 1. Background
- 2. Problem description

3. Method

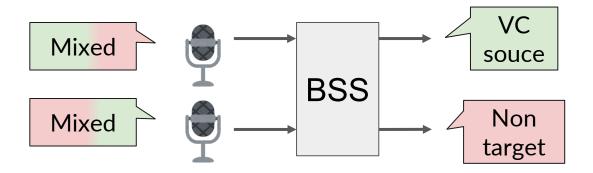
4. Experimental results and Analysis

Method: Overview



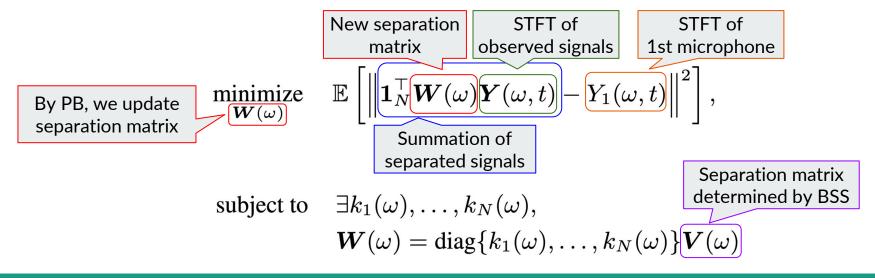
Method: Blind Source Separation (BSS)

- Purpose of this step
 - Enhance VC-source speaker's voice
 - Extract non-target signals (to preserve non-target information)
- Apply BSS to obtain each signal separately



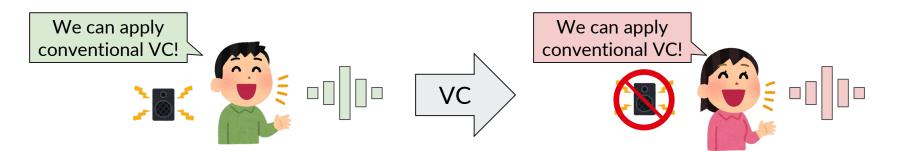
Method: Projection Back (in BSS)

- BSS is based on statistical independence, but cannot determine scale
- BSS output introduces a constant scaling factor (resulting in distortion)
- Projection Back: Determine scaling factor to reproduce microphone signal



Method: Voice Conversion (VC)

- Apply VC to extracted VC source speaker's speech
- This step: noisy-to-clean setting
 - Non-target signals are extratec in another channel
 - This channel can remove non-target signal



Method: Remix 1

- Simple approach: Apply inverse matrix of separation matrix $(\hat{A}(\omega) := W(\omega)^{-1})$
 - o "Mixing" is inverse process of "Separation"
 - Each component of $\hat{A}(\omega)$ is expected to be transfer function

$$\hat{\boldsymbol{Z}}(\omega,t) = \hat{\boldsymbol{A}}(\omega) \begin{bmatrix} \operatorname{VC}[\hat{X}_{1}(\omega,t)] \\ \hat{\boldsymbol{X}}_{2:N}(\omega,t) \end{bmatrix}$$

- In reality, this may degrade audio quality of VC output!
 - After PB procedure, $\hat{A}(\omega)$ correspond to relative transfer function
 - From PB-target microphone to another microphone)
 - This implicitly include unstable inverse filter

Method: Remix 2

• Another approach: Direct estimation of transfer function

- We use steering vector as estimation
 - This model is based on the direction of arrival (DoA)
- This model does not account for other spatial factors, (e.g., reverberation)
- For non-target signals, we apply inverse of separation matrix

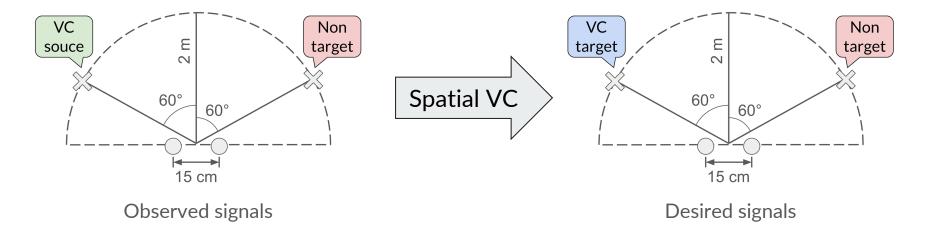
$$\hat{\boldsymbol{Z}}(\omega,t) = \begin{bmatrix} \boldsymbol{d}(\omega) & \hat{\boldsymbol{A}}_{2:N}(\omega) \end{bmatrix} \begin{bmatrix} \operatorname{VC}[\hat{X}_{1}(\omega,t)] \\ \hat{\boldsymbol{X}}_{2:N}(\omega,t) \end{bmatrix}$$

Outline

- 1. Background
- 2. Problem description
- 3. Method
- 4. Experimental results and Analysis

Settings: Test Data

- Simulated with pyroomacoustics [4]
 - Reverberation time (RT₆₀): Approx. 200ms
 - Speaker: Randomly sampled from 10 speakers in JVS corpus [5]

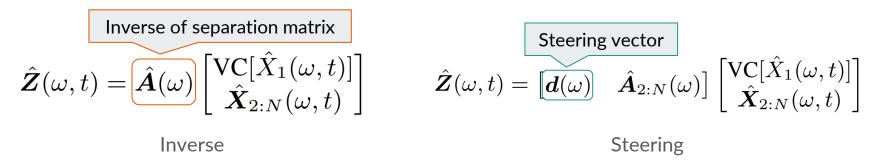


Settings: Proposed Method

- **BSS:** Geometrically Constrained Independent Vector Analysis (GC-IVA) [6]
 - Features of GC-IVA:
 - Based on statistical independence of source signals
 - Utilize spatial regularization to specify VC-source speaker
 - Challenges in "Remixing" with inverse matrix:
 - Issues also arise with other BSS methods (e.g., ILRMA [7])
 - This problem is due to PB (common in linear BSS methods)
- VC: DDSP-SVC [8]
 - Open-source many-to-many voice conversion model

Compared Methods

- Ideal: Simulated desired signal (for comparison)
- Inverse: Spatial VC using inverse matrix for remixing
 - Preserve spatial information, but degrade quality
- Steering: Spatial VC using steering vector for remixing
 - Maintain audio quality, but discard spatial information except DoA.



Results: Acoustic Quality

- Calculated Mean Opinion Score (MOS) on naturalness
- "Inverse" exhibited a significantly lower score
 - Attributed to right channel (=other than PB target)
- Indicating: Inverse matrix degrade audio quality

Methods	Stereo	Monaural-Left (PB target)	Monaural-Right
Ideal	$ 4.254 \pm 0.060$	$ 4.062 \pm 0.060$	4.102 ± 0.058
Inverse Steering	$\begin{array}{ c c c c c c c c } 1.992 \pm 0.064 \\ 3.405 \pm 0.062 \end{array}$	$\begin{vmatrix} 4.142 \pm 0.060 \\ 3.975 \pm 0.066 \end{vmatrix}$	$\begin{array}{c} 1.388 \pm 0.042 \\ 3.132 \pm 0.070 \end{array}$

MOS (↑)

Results: Spatial Information

- Calculated Log-determinant divergence (LDD) [9] of spatial covariance matrix from "Ideal" to "Inverse" and "Steering"
 - Indicator for accuracy of spatial information reproduction
- "Inverse" is better than "Steering"
- Indicating: Steering discards spatial information (e.g., reverberation)

Methods	$RT_{60} \simeq 70 \text{ ms}$	$RT_{60} \simeq 200 \text{ ms}$	$ RT_{60} \simeq 400 \mathrm{ms}$
Inverse Steering	$\begin{array}{c} \textbf{0.468} \pm \textbf{0.074} \\ 1.990 \pm 0.367 \end{array}$	$\begin{array}{c} 0.979 \pm 0.147 \\ 3.097 \pm 0.552 \end{array}$	$\begin{array}{c} 2.058 \pm 0.270 \\ 4.666 \pm 0.535 \end{array}$

 $LDD(\downarrow)$

Conclusion

- We proposed a new task: Spatial Voice Conversion (Spatial VC)
 - VC preserving <u>spatial Information</u> and <u>non-target signals</u>

- We proposed a baseline method for spatia VC
 - **Combining BSS and VC** (BSS: blind source separation)

- We identified key challenges inherent in Spatial VC
 - Preserving spatial information may degrade audio quality

Reference

[1] C. Valentini-Botinhao, X. Wang, S. Takaki, and J. Yamagishi, "Investigating rnn-based speech enhancement methods for noiserobust text-to-speech." in SSW, 2016, pp. 146–152. [2] C. Xie, Y.-C. Wu, P. L. Tobing, W.-C. Huang, and T. Toda, "Noisy-to-noisy voice conversion" framework with denoising model," in 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2021, pp. 814–820. [3] M. Togami, J.-M. Valin, K. Helwani, R. Giri, U. Isik, and M. M. Goodwin, "Real-time stereo speech enhancement with spatialcue preservation based on dual-path structure," arXiv preprint arXiv:2402.00337, 2024 [4] R. Scheibler, E. Bezzam, and I. Dokmanic, "Pyroomacoustics: A ' python package for audio room simulation and array processing algorithms," in Proc. ICASSP. IEEE, 2018, pp. 351–355.

Reference

[5] S. Takamichi, K. Mitsui, Y. Saito, T. Koriyama, N. Tanji, and H. Saruwatari, "Jvs corpus: free japanese multi-speaker voice corpus," arXiv preprint arXiv:1908.06248, 2019.

[6] L. Li and K. Koishida, "Geometrically constrained independent vector analysis for directional speech enhancement," in Proc. ICASSP. IEEE, 2020, pp. 846–850.

[7] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari, "Determined blind source separation unifying independent vector analysis and nonnegative matrix factorization," IEEE/ACM TASLP, 24(9), 1626-1641.

[8] "DDSP-SVC," https://github.com/yxlllc/DDSP-SVC.

[9] B. Kulis, M. A. Sustik, and I. S. Dhillon, "Low-rank kernel learning with bregman matrix divergences." Journal of Machine Learning Research, vol. 10, no. 2, 2009.