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Introduction

« Speaker adaptation of speech synthesis is a technique for synthesizing speech of unseen speaker with small amounts of data. |Speech samples page:

* The conventional speaker adaptation method cannot be used without the reference speech of the unseen speaker.
* \We propose a speaker adaptation method which incorporates humans’ perceptual feedback and does not feed reference speech to speaker encoder.
« Experimental results indicate that the proposed method can synthesize speech with the same or better quality than the conventional method, depending on the user and test speaker.

http://sython.org/demo/udagawa22interspeech/demo _sistts.html

Conventional Method

Experimental Evaluations

Transfer-learning-based method [1] extracts speaker
embedding from reference audio with speaker encoder
pretrained in the speaker verification task.

Issue: The conventional method cannot be used without the

reference speech of the target speaker.
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Experimental Condition

Corpus The Corpus of Spontaneous Japanese (CSJ) [3]

(speaker encoder) (947 men and 470 women, 660 hours)

TTS model FastSpeech 2 [4]

Corpus The parallel data of the Japanese Versatile Speech

(TTS model) (JVS) corpus [5]
(49 men and 51 women, 22 hours 100 sentences per
speaker)

Data train 90 speakers (44 men, 46 women)

spliting  test 4 speakers (2 men, 2 women)

val 6 speakers (3 men, 3 women)
Vocoder Pretrained universal model of HiFi-GAN [6]

Objective/Subjective Evaluation
(Multiple Utterances)

Proposed Method

Objective Evaluation (During Search)

» Target speaker embedding is explored with Sequential Line
Search (SLS) [2] algorithm.
 Reference speech is not fed to speaker encoder.

 Two measures are taken to search for a more natural voice.
1. Initialization with mean male/female speaker
2. Setting the search space to a quantile of the training data
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We calculated mel spectrogram MAE at each step when our
method is manipulated by 8 participants up to 30 steps.

Methods:

* Proposed: Proposed method

* TL: Transfer-learning-based method [1]

» Mean-Speaker: Endpoint of initial line segment

Results:

* Mel spectrogram MAE tended not to improve by human
manipulation.

* The proposed method could synthesize speech
comparable to TL depending on the participant.
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Comparison methods:
« SLS-{best, mean, worst}. The speaker embedding whose mel
spectrogram MAE was {minimum, mean, maximum}
* TL: Transfer-learning-based method [1]
» Mean-Speaker: Endpoint of initial line segment

Mel spectrogram MAE results:
» SLS-worst were inferior to TL.
* In several cases, SLS-best and SLS-mean were comparable to TL.
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Naturalness MOS results:

» The proposed method could synthesize speech as natural as TL in
many cases.
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Similarity MOS results:

* In some cases, the proposed method was inferior to Mean-Speaker.
* In some cases, the proposed method could achieve the same
quality of speaker adaptation as TL.
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