

1 Code & speech samples

Frame-Wise Breath Detection with Self-Training: An Exploration of **Enhancing Breath Naturalness in Text-to-Speech**

Dong Yang^{1, 2}, Tomoki Koriyama¹, Yuki Saito² ¹CyberAgent, Inc., Japan; ²The University of Tokyo, Japan

Overview

	Hmm	I think	that	[Inhale]	we	should	[click]	go
	(Filled Paus	e)	(Silence	e) (Breath)		(То	ngue Cl	ick)
	Breath synthe	sis remains	underexplor	ed in Text-to-S	Speech	ר) rese (TTS)	arch.	
. Breath Detection (Our Focus)		a. Deve I. Avc b. Prop I. Frai	elop a rule id extensive ose and ti me-wise dete	-based app manual annote rain our bree ection with red	oroac ation c ath de uced c	h for inition of training d etection i computatio	al labelir ata model nal costs	Jg
		ll. Sel	f-training me	ethod on a larg	e TTS o	corpus		

Proposed Model

2. Speech Synthesis (For Validation)

- a. Insert breath marks to text transcripts based on detection results
- b. Train a TTS model
 - I. Achieve more natural breath-contained synthetic speech

Acoustic Features

Duration^[1]

Zero-Crossing Rate (ZCR)^[2]

Definition: Rate of the audio signal changes its sign For discrete sampled signal:

N: window length,
$$X = \{x[n]\}_{n=0}^{N-1}$$
: audio signal

$$ZCR(X) = \frac{1}{N-1} \sum_{n=1}^{N-1} 0.5 |sgn(x[n]) - sgn(x[n-1])|$$

Variance of Mel-Spectrogram (VMS)

Definition: Var(Mel) in frequency domain

Normalized Average of VMS (NA-VMS)

Definition: mean of min-max normalized VMS

F: frame, $V = \{v[f]\}_{f=0}^{F-1}$: audio signal

$$VA - VMS(V) = \frac{1}{F} \sum_{f=0}^{F-1} \frac{v[f] - \min(V)}{\max(V) - \min(V)}$$

Experimental Results

Breath detection experiments:

Dataset & Annotation

LibriTTS-R^[3] Corpus + MFA^[4] for text-speech alignment & pause recognition

Manual annotation for valid & test sets:

	Utterances	Pauses	Annotated breath
Validation set	520	2,049	400
Test set	455	2,051	480

Rule-based annotation for training set:

Class	Duration	Max(VMS)	Max(ZCR)	NA-VMS	Precision	Recall
Breath	> 300 ms	> 150	> 1 x 10 ⁻⁴	> 0.6	0.982	0.450
Non-breath	-	< 150	< 5 x 10 ⁻⁵	-	1.000	0.111

Self-Training Process

<pre>label(T, P, B, U):</pre>		\int Annotated breath: $B \rightarrow 1$
All frames in training set: <i>T</i>	MFA-recognized pauses: P	Annotated non-breath: $U \rightarrow 0$ Unannotated: $P \setminus (B \cup U) \rightarrow -100$
	Non-pauses: $T \setminus P \rightarrow 0$	

Algorithm: Self-training for breath detection models

Initialize: $k \leftarrow 0$ Metric: intersection over union (IoU)

Iteration	Baseline ^[5]	Proposed
0	0.616	0.777
1	0.634	0.809
2	0.681	0.829
3	0.710	0.836
4	0.709	0.827

Training configurations:

- Optimizer: AdamW
- Scheduler: Linear
- Peak learning rate: 2 x 10⁻⁵
- Epoch: 10
- Batch size: 64

- Dataset: train-clean-100 train-other-500

1. Our proposed model consistently outperformed the baseline model.

2. Both models achieved their peak IoU after the 3rd training iteration, where the models were considered the best-performing ones and used in the TTS experiments.

Ablation studies:

Model	Iteration	loU	
Proposed	0	0.777	1. ZCR and VMS in the
w/o ZCR		0.631	non-breath set provec to be critical.
w/o VMS		0.677	
w/o non-breath		0.702	2. Continued training
Proposed	1	0.809	without pseudo- labeling did not
w/o pseudo-label		0.740	improve performance.

TTS experiments:

TTS model: VITS^[6]; Dataset: train-clean-360

 $Y^0 \leftarrow label(T, P, B, U)$

 $D_{\theta}^{0} \leftarrow BCE(D_{\theta}(T), Y^{0})$

Repeat:

Until:

Output:

 $k \leftarrow k+1$ $\alpha^{k} \leftarrow argmin_{\alpha^{k}}|Precision(D_{\theta}^{k-1}(P_{valid}) > \alpha^{k}, B_{valid}) - (0.97 - 0.02 * k)|$ $\beta^k \leftarrow argmin_{\beta^k} | Precision(D_{\theta}^{k-1}(P_{valid}) < \beta^k, U_{valid}) - (0.97 - 0.02 * k) |$ $\widehat{B} \leftarrow D_{\theta}^{k-1}(T) > \alpha^k$ $\widehat{U} \leftarrow D_{\theta}^{k-1}(T) < \beta^k$ $Y^k \leftarrow label(T, P, B \cup \hat{B}, U \cup \hat{U})$ > Pseudo-labeling $D^k_{\theta} \leftarrow BCE(D^{k-1}_{\theta}(T), Y^k)$ $\gamma^k \leftarrow argmax_{\gamma^k} IoU(D^k_{\theta}(T_{valid}) > \gamma^k, B_{valid})$ $IoU(D_{\theta}^{k}(T_{valid}) > \gamma^{k}, B_{valid}) < IoU(D_{\theta}^{k-1}(T_{valid}) > \gamma^{k-1}, B_{valid})$ D_{θ}^{k-1}

Model	MOS1 ± CI	MOS2 ± CI
Ground truth	4.03 ± 0.12	3.92 ± 0.13
VITS	3.35 ± 0.15	3.34 ± 0.17
VITS w/ baseline	3.27 ± 0.15	3.50 ± 0.14
VITS w/ proposed	3.37 ± 0.14	3.55 ± 0.15

MOS1:

- General evaluation
- Samples: Not all utterances included breath
- Conclusion: Inaccurate breath detection negatively affected the TTS training

MOS2:

- Breath-focus evaluation
- Samples: All utterances included breath
- Instruction: "Please focus on the breath sounds"
- Conclusion: Detected breath marks enhanced the naturalness of synthetic breath sounds

[1] N. Braunschweiler and L. Chen, SSW 2015. [2] D. Ruinskiy and Y. Lavner, TASLP 2007. [3] Y. Koizumi et al., INTERSPEECH 2023.

[4] M. McAuliffe et al., INTERSPEECH 2017. [5] E. Sz[´]ekely et al., ICASSP 2019. [6] J. Kim, J. Kong, and J. Son, ICML 2021.