
THE T05 SYSTEM FOR THE VOICEMOS CHALLENGE 2024:
TRANSFER LEARNING FROM DEEP IMAGE CLASSIFIER TO NATURALNESS MOS

PREDICTION OF HIGH-QUALITY SYNTHETIC SPEECH

Kaito Baba, Wataru Nakata, Yuki Saito, Hiroshi Saruwatari

The University of Tokyo, Japan

ABSTRACT

We present our system (denoted as T05) for the VoiceMOS Chal-
lenge (VMC) 2024. Our system was designed for the VMC 2024
Track 1, which focused on the accurate prediction of naturalness
mean opinion score (MOS) for high-quality synthetic speech. In
addition to a pretrained self-supervised learning (SSL)-based speech
feature extractor, our system incorporates a pretrained image feature
extractor to capture the difference of synthetic speech observed in
speech spectrograms. We first separately train two MOS predictors
that use either of an SSL-based or spectrogram-based feature. Then,
we fine-tune the two predictors for better MOS prediction using the
fusion of two extracted features. In the VMC 2024 Track 1, our T05
system achieved first place in 7 out of 16 evaluation metrics and sec-
ond place in the remaining 9 metrics, with a significant difference
compared to those ranked third and below. We also report the results
of our ablation study to investigate essential factors of our system.

Index Terms— VMC 2024, MOS prediction, zoomed-in MOS
test, SSL, feature fusion, deep image classifier

1. INTRODUCTION
Automatic quality assessment of synthetic speech is an emerging re-
search topic in the text-to-speech (TTS) and voice conversion (VC)
research fields [1, 2]. It is a promising technology for further de-
velopment of TTS and VC because it can reduce the cost of human-
based subjective evaluations on synthetic speech, such as a mean
opinion score (MOS) test. In fact, UTMOS [3], an open-sourced
MOS prediction system, was introduced as an alternative way to
compare the performances of TTS systems submitted to the Inter-
speech 2024 Speech Processing Using Discrete Speech Unit Chal-
lenge [4]. Therefore, a MOS prediction system specialized for high-
quality synthetic speech is valuable for a unified comparison of state-
of-the-art deep neural network (DNN)-based TTS/VC systems [5].

The range-equalizing bias in MOS tests [6] is one challenge to
be addressed for achieving this goal. That is, listeners in a MOS
test tend to use the entire range of choices on the rating scale (e.g.,
from one to five), regardless of the absolute quality of the samples
used in the MOS test. For example, a medium-quality TTS/VC sys-
tem in one MOS test may achieve relatively low MOS in another
test excluding worse-performing systems from the comparison (i.e.,
zoomed-in MOS test). Therefore, MOS prediction systems built
without considering the range-equalizing bias may underestimate
high-quality synthetic speech or overestimate low-quality synthetic
speech.

In this paper, we present our MOS prediction system specialized
for high-quality synthetic speech, which is designed for the Voice-
MOS Challenge (VMC) 2024 [7] Track 1, the task of predicting
zoomed-in MOS test results. Our system adopts some techniques
that can improve the MOS prediction performance in the VMC 2022

and 2023 [8, 9]: using self-supervised learning (SSL)-based speech
features [3] and fusing multiple speech features [10]. We also in-
vestigate the effectiveness of using EfficientNetV2 [11], i.e., DNN-
based image feature extractor, for capturing the difference of syn-
thetic speech observed in speech spectrograms accurately. In our
two-stage fine-tuning strategy, we first separately train two MOS
predictors that use either of an SSL-based or spectrogram-based fea-
ture. Then, we fine-tune the two predictors for better MOS predic-
tion using the fusion of two extracted features. In the VMC 2024
Track 1, our T05 system achieved first place in 7 out of 16 evalu-
ation metrics and second place in the remaining 9 metrics, with a
significant difference compared to those ranked third and below. We
also report the results of our ablation study to investigate essential
factors of our systems. The result demonstrates that fusing the two
features improves the correlation-based evaluation metrics. It also
indicates that using a large-scale MOS dataset consisting of solely
neural TTS samples or an actual zoomed-in MOS dataset for the
training enhances the MOS prediction performance. The code and
the demo for our system are available online1.

2. THE VMC 2024 TRACK 1

The VMC 2024 [7] consists of three tracks, where our T05 system
is designed for the Track 1. In this track, the organizers collected the
results of zoomed-in MOS tests, where they compared speech syn-
thesis systems that achieved high MOS from the BVCC dataset [12].
The organizer conducted three MOS tests with the zoom-in rates of
50%, 25%, and 12%, representing the number of systems covered in
the test compared to the original BVCC dataset. No official training
data considering these “zoomed-in” situations were provided by the
organizers, and thus participants were required to build their MOS
prediction systems with publicly available MOS datasets. After the
track finished, the organizers disclosed that the validation set con-
sisted of the results of 50% zoomed-in MOS test, while the evalua-
tion set consisted of both 25% and 12% zoomed-in MOS tests. The
evaluation metrics included mean squared error (MSE), linear cor-
relation coefficient (LCC), Spearman’s rank correlation coefficient
(SRCC), and Kendall’s rank correlation coefficient (KTAU) at both
the utterance and system levels.

3. OUR SUBMITTED SYSTEM (UTMOSV2)

3.1. Basic Architecture

Our T05 system (UTMOSv2) leverages the combination of spectro-
gram features extracted by a pretrained image feature extractor and
speech features obtained from pretrained speech SSL models (i.e.,
SSL feature). Figure 1a illustrates the basic model architecture.

1 Code: https://github.com/sarulab-speech/UTMOSv2
Demo: https://huggingface.co/spaces/sarulab-speech/UTMOSv2

https://github.com/sarulab-speech/UTMOSv2
https://huggingface.co/spaces/sarulab-speech/UTMOSv2
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(b) Spectrogram feature extractor.

Fig. 1: The basic model architectures in the proposed system (UTMOSv2). Our system leverages SSL features hSSL and spectrogram features
hspec. Additionally, the data domain embedding hdomain is obtained from the data-domain ID which is unique to each dataset used in the
training. Finally, these three features are concatenated to predict the MOS of the input speech.

3.1.1. Spectrogram Feature Extractor

The field of computer vision using deep learning has significantly
advanced in recent years, and applying DNN-based models (i.e.,
deep image classifiers) to spectrograms has demonstrated promis-
ing results in some audio/speech processing tasks [13, 14, 15]. Our
system thus leverages the features extracted from spectrograms us-
ing a convolutional neural network (CNN) pretrained on a large im-
age dataset. The architecture of our spectrogram feature extractor is
shown in Figure 1b.

In spectrogram feature extraction, the input speech waveform
is first transformed into multiple mel-spectrograms. Each mel-
spectrogram is extracted with different short-term Fourier transform
(STFT) settings, which aims to mitigate the problem of the trade-off
between frequency resolution and time resolution determined by the
window size [13]. Let x = [x⊤

1 , . . . ,x
⊤
K ]⊤ be K speech frames,

where xk denotes the kth frame consisting of L samples. These
frames are randomly extracted from the input speech waveform.
Multiple mel-spectrogram transformations with N different window
sizes (w(1), · · · , w(N)), w(n) ∈ N, MelSpecw(n)(·), are applied to
each extracted audio frame:

y
(n)
k = MelSpecw(n)(xk),

where y
(n)
k denotes the nth mel-spectrogram extracted from the kth

speech frame using the window size w(n).
These mel-spectrograms are then regarded as images rather

than speech parameter sequences and fed into CNNs pretrained
on ImageNet [16], following previous work [15]. The shape of
mel-spectrogram image is fixed as (F, F ), where F represents the
number of mel-bands, regardless of the window size setting. Multi-
ple CNNs are prepared, where each network receives a spectrogram
with a different window size w(n) as input, extracting an image
feature as follows:

h
(n)
k = CNNw(n)(y

(n)
k ).

The features obtained from y
(n)
k through the CNN for each win-

dow width setting, i.e., (h
(1)
k , . . . ,h

(N)
k ), are aggregated using a

weighted sum h̃k =
∑N

n=1 wspec,nh
(n)
k . The trainable weight pa-

rameter vector wspec ∈ RN is initialized such that
∑N

n=1 wspec,n =

1. As a result, the aggregated feature h̃k has the dimension Rc×f×t,
where c, f , and t denote the number of features, the height of feature
maps and the width of the feature maps obtained through CNNs, re-
spectively. These aggregated features with different k are then con-
catenated across several frames in the t dimension and subsequently
pooled in both t and f dimensions. A combination of average and
max pooling is used in the time direction; a combination of atten-

tion [17] and max pooling was employed in the frequency direction.
The final output of our spectrogram feature extractor is hereinafter
denoted as hspec.

3.1.2. SSL Feature Extractor

Following previous studies on automatic MOS prediction [2, 3], we
utilize a pretrained SSL model to extract speech features from an in-
put waveform. The raw waveform is first fed into the SSL model to
extract hidden states from the each layer of the Transformer encoder
(e1, e2, · · · , eM ). Then, the hidden states are aggregated using a
weighted sum ẽ =

∑M
m=1 wSSL,mem, where M denotes the num-

ber of Transformer encoder layers. The trainable weight parameter
vector wSSL ∈ RM is initialized such that

∑M
m=1 wSSL,m = 1. Fi-

nally, unlike in previous studies [2, 3], combination of attention [17]
and max pooling along the sequence dimension are applied to the
aggregated hidden state vectors for each time step. The final output
of our SSL feature extractor is hereinafter denoted as hSSL.

3.1.3. Data-domain Encoding

Following the UTMOS system [3], we build our MOS prediction
system using multiple MOS datasets for the model training with the
data-domain encoding (i.e., conditioning the system on the dataset
ID). This aims to address the biases in different MOS tests, possibly
including the range-equalizing bias [6]. For the data-domain encod-
ing, simple look-up embedding table is used for converting discrete
dataset ID to continuous data-domain embedding hdomain.

Note that this data-domain encoding cannot define IDs for un-
seen MOS datasets and thus does not necessarily work properly for
the out-of-domain prediction. One can deal with this issue by, for ex-
ample, predicting MOS for some seen data-domains and taking the
average of multiple predicted scores [3]. Because the primal focus
of this paper is the range-equalizing bias, we thoroughly investigate
the domain gap between the training and test datasets in our ablation
study (Section 4.6).

3.1.4. Fusion of Spectrogram Features and SSL Features

A simple fully connected layer is prepared and trained for predicting
the MOS of input speech using the fusion of extracted spectrogram
and SSL features denoted as hspec and hSSL, respectively. The in-
put is the concatenation of these two features and the data-domain
embedding along the feature dimension:

ŝ = FC (Concat(hspec,hSSL,hdomain)) , (1)

where FC(·) and Concat(·) denote a fully connected layer and fea-
ture concatenation, respectively.



Table 1: Specifications of dataset used in the training. “BC” and #
mean “Blizzard Challenge” and “number of,” respectively.

Dataset name # listeners # systems # sentences # ratings

BC2008 229 7 80 16,987
BC2009 129 19 141 21,332
BC2010 EH1 177 18 36 5,863
BC2010 EH2 179 18 36 6,070
BC2010 ES1 73 8 16 1,152
BC2010 ES3 84 8 16 1,250
BC2011 236 13 39 9,328
BVCC 304 187 7106 56,848
SOMOS 987 201 2000 359,100
sarulab-data 304 95 3610 28,880

3.2. Additional Data Collection

As there are no official training sets provided by the organizers,
we collected training data from the publicly available MOS test re-
sults. The collected data consisted of BVCC [12], Blizzard Chal-
lenge (BC) 2008 [18], 2009 [19], 2010 [20], 2011 [21] SOMOS [22],
and zoomed-in BVCC dataset that is publicly available (sarulab-
data)2. The specification of datasets are shown in Table 1.

For the dataset derived from BC, we only used subjective eval-
uation results for the english utterances. For BC2008, We excluded
listeners which are marked with EUS as their scores were not in 5-
point scale. For BC2010, We used results for task EH1, EH2, ES1
and ES3. ES2 was excluded as naturalness of synthetic speech was
not considered in this task.

3.3. Loss Function

For the loss function used in the training, we adopt the combination
of a contrastive loss [3] and mean squared error (MSE) loss. Specif-
ically, the contrastive loss is formulated as

Lcon(s, ŝ) =
∑
i ̸=j

max(0, |(si − sj)− (ŝi − ŝj)| − α), (2)

where s and ŝ denote the target MOS and predicted MOS, respec-
tively. The margin hyperparameter α > 0 makes the trained model
ignore small errors lower than this margin. The final loss L is defined
as follows:

L(s, ŝ) = λconLcon(s, ŝ) + λmseLmse(s, ŝ), (3)

where λcon and λmse are hyperparameters that control the weights of
the contrastive and MSE loss functions, respectively.

3.4. Multi-Stage Learning

When fine-tuning a pretrained model, catastrophic forgetting can
significantly worsen the performance of the model on learned do-
mains [23]. To mitigate this, we introduce multi-stage learning.

Since our proposed system is large and difficult to train the pa-
rameters of two feature extractors from scratch, we first train the
two extractors separately. Then, we fine-tune the pretrained weights
from these individual models and train the parameters of the FC
layer (Eq. 1) for the feature fusion. In summary, the training per-
forms the following stages:

2https://github.com/sarulab-speech/VMC2024-sarulab-data

Stage 1: The spectrogram and SSL feature extractors are trained
separately. Specifically, an FC layer, which takes the con-
catenated features of data-domain embedding hdomain and ei-
ther of hspec or hSSL and predicts MOS, is trained jointly with
the extractor.

Stage 2: The weights of the two extractors are frozen and only the
feature fusion layer (Eq. 1) along with a new data-domain
embedding layer is trained.

Stage 3: All parameters of the models in our system are fine-tuned
with a small learning rate.

Our SSL feature extractor is also pretrained with two-stage training
following similar stages described above. That is, the model param-
eters of a backbone SSL model is first frozen and only the FC layer
for the MOS prediction is trained. Then, all parameters of this ex-
tractor including the SSL model are fine-tuned. In contrast, our pre-
liminary experiment showed that this two-stage pretraining for the
spectrogram feature extractor did not bring significant improvement.
Therefore, we decided to train the entire model of this extractor, i.e.,
the pretrained CNNs and the FC layer for the MOS prediction.

Technically, in the comparative experiments in Section 4, the
spectrogram feature extractor was trained using data-domain em-
beddings on all datasets. Meanwhile, the system submitted for the
VMC2024 Track 1 excluded the data-domain encoding and per-
formed fine-tuning on sarulab-data after the training on BVCC.
Apart from this aspect, the DNN architecture used in the compar-
ative experiments in Section 4 and the submitted system is exactly
the same.

4. EXPERIMENTS

We conducted several experiments to validate the effectiveness of
our T05 system. Specifically, we performed ablation studies on the
fusion of spectrogram and SSL features, multi-stage learning, and
datasets.

4.1. Common Experimental Conditions

We used EfficientNetV2 [24] as the CNN for our spectrogram feature
extractor. For the backbone SSL model, we used wav2vec2.0 [25]
base3 pretrained on LibriSpeech [26]. For the data-domain encoding,
we used embedding with hidden size of 1.

For the loss function, we set the margin hyperparameter α = 0.2
(Eq. (2)) for all experiments. The weight coefficients for the con-
trastive and MSE loss, λcon and λmse, were set to of 0.2 and 0.7,
respectively. These hyperparameters were decided based on our pre-
liminary experiments. For the optimizer, we used AdamW [27] with
the weight decay coefficient of 1×10−4. For learning rate scheduler,
we decayed the learning rate with a cosine annealing [28]. The initial
learning rate varied depending on the training stage. During training,
we incorporated mixup [29] for all training, which was shown to be
effective in MOS prediction [30].

A five-fold cross-validation was performed, and the best model
checkpoint was selected based on the average system-level SRCC
calculated for each validation fold. The final prediction was obtained
by averaging the predictions from each of the five folds. Addition-
ally, during inference, we generated predictions five times by ran-
domly selecting different frames of the input speech waveform and
then averaged these predictions (i.e., test-time augmentation [31]).

3https://huggingface.co/facebook/wav2vec2-base

https://github.com/sarulab-speech/VMC2024-sarulab-data
https://huggingface.co/facebook/wav2vec2-base


Table 2: Comparison of performance between our systems and the “B01” baseline. Bold and underlined scores are the best and worst among
our three systems, respectively. We also compare our systems and human-annotated MOS (“BVCC MOS”).

Zoom-in rate: 25% Zoom-in rate: 12%
Utterance-level System-level Utterance-level System-level

MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑

Ours 0.690 0.618 0.613 0.442 0.465 0.922 0.919 0.752 0.459 0.578 0.579 0.404 0.288 0.840 0.854 0.650
w/o SSL 0.566 0.576 0.565 0.403 0.353 0.889 0.909 0.740 0.357 0.518 0.516 0.355 0.188 0.762 0.770 0.570
w/o spec. 0.937 0.602 0.603 0.432 0.700 0.910 0.909 0.731 0.673 0.530 0.529 0.364 0.497 0.793 0.793 0.570

B01 1.154 0.508 0.509 0.358 0.998 0.750 0.745 0.539 0.741 0.422 0.417 0.285 0.589 0.608 0.609 0.444
UTMOS [3] 0.872 0.407 0.411 0.286 0.690 0.649 0.615 0.433 0.541 0.297 0.300 0.206 0.378 0.440 0.367 0.230

BVCC MOS 0.717 0.377 0.358 0.256 0.413 0.728 0.679 0.495 0.481 0.322 0.316 0.225 0.223 0.691 0.702 0.467

4.2. Evaluation Metrics

The evaluation was performed on the test set with the zoom-in
rate of 25% and 12%. In both test sets, we used system level and
utterance-level MSE, LCC, SRCC and KTAU as metrics, referring
to the VMC2024 evaluation protocol.

4.3. VMC2024 Results of Our T05 System [7]

In the Track1, both utterance-level and system-level metrics are cal-
culated for 25% and 12% highest-rated systems, respectively. The
official evaluation results show that our T05 system achieved the
first place in 7 out of 16 metrics and ranked the second in the re-
maining 9 metrics, thereby securing either the first or second place
in all metrics. Additionally, it is notable that there is a large margin
in the performance to those ranked the third and below.

4.4. Ablation Study on Fusing Spectrogram/SSL Features

To evaluate the effectiveness of fusing spectrogram features and SSL
features, we compared the prediction scores of the fused model with
those obtained using only spectrogram or SSL features.

4.4.1. Experimental Conditions

In this ablation study, we compared the following systems:

• Ours: The proposed system using the feature fusion.
• Ours w/o SSL: The proposed system using only the spectro-

gram feature extractor.
• Ours w/o spec.: The proposed system using only the SSL fea-

ture extractor.
• B01: SSL-MOS [2] trained on the original BVCC [12] samples

and labels. This system was considered as baseline system in
the VMC 2024 track 1.

• UTMOS [3]: The opensourced MOS prediction system.

“Ours w/o SSL” was trained with a learning rate ranging from 1 ×
10−3 to 1×10−7, a batch size of 10, and for 20 epochs. As explained
in Section 3.4, “Ours w/o spec.” was built with the two-stage train-
ing. We first trained the FC layer and data-domain embedding for
20 epochs using the learning rate ranging from 1×10−3 to 1×10−7

and batch size of 32. Then, we fine-tuned all model parameters for
5 epochs using the learning rate ranging from 3× 10−5 to 1× 10−9

and batch size of 32. The system using the feature fusion, “Ours,”
was built upon these two systems. Specifically, we utilized these two
feature extractors trained through “Ours w/o spec.” and “Ours w/o
SSL.” The following FC layer, and data-domain embedding were
randomly initialized.

The stage 2 training was performed for 8 epochs using a learning
rate ranging from 1 × 10−3 to 1 × 10−5 and a batch size of 16.

The stage 3 training was iterated with 2 epochs using a learning rate
ranging from 5× 10−5 to 1× 10−8 and a batch size of 8.

In this comparison, we used all datasets listed in Table 1 for
the training and set the data-domain ID for the MOS prediction to
“BVCC” in three our systems.

4.4.2. Results and Discussion

The results are shown in Table 2. For correlation-based metrics, we
can see that all of our three systems consistently outperforms both
two baseline models in all metrics. Furthermore, in correlation-
based metrics, while there are little difference in scores between
“Ours w/o SSL” and “Ours w/o spec.,” the fusion system, “Ours,”
demonstrates a significant improvement in scores compared to these
two systems. These results indicate that our systems are more effec-
tive for zoomed-in MOS prediction compared to the existing base-
line systems, particularly in correlation-based metrics. It also sug-
gests the effectiveness of fusing spectrogram and SSL features in
these metrics.

One noteworthy observation is that “Ours w/o SSL” achieves the
best MSE in all cases, but the worst in many cases in the correlation-
based metrics. On the other hand, “Ours w/o spec.” scored the
highest MSE, but outperforms “Ours w/o SSL” in many cases in the
correlation-based metrics. From this perspective, we can infer that
the spectrogram features derived from our image feature extractor
are better at capturing fine differences in synthetic speech and pre-
dicting absolute MOS values, while SSL features are better at pre-
dicting rankings among multiple speech synthesis systems. In sum-
mary, these results suggest that the fusion of these features improves
the prediction of absolute speech quality while further improving the
correlation-based measures.

We also computed the evaluation metrics between the ground-
truth MOS and human-annotated MOS (“BVCC MOS”), which was
collected without considering the range-equalizing bias. The results
from Table 2 demonstrate that the bias actually exists and “BVCC
MOS” is not well correlated with the ground-truth MOS. In con-
trast, our fusion system shows better scores than “BVCC MOS” in
all metrics except for system-level MSE. Considering that the pre-
diction is made with the data-domain embedding of BVCC, these
results suggest that our system has demonstrated robust prediction
of MOS for unseen listening test settings.

4.5. Comparison of Multi-Stage Learning

To evaluate the effectiveness of the multi-stage learning described in
Section 3.4, we conducted a comparative experiment.



Table 3: Comparison of performance between our systems that did not employ the multi-stage learning process. Bold values are the best
scores and underlined values are the worst scores among each column.

Zoom-in rate: 25% Zoom-in rate: 12%
Utterance-level System-level Utterance-level System-level

MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑

Ours 0.690 0.618 0.613 0.442 0.465 0.922 0.919 0.752 0.459 0.578 0.579 0.404 0.288 0.840 0.854 0.650
w/o Stage 2 0.469 0.531 0.555 0.394 0.209 0.900 0.911 0.744 0.342 0.436 0.505 0.350 0.108 0.787 0.816 0.602
w/o Stage 1&2 0.355 0.480 0.482 0.336 0.125 0.738 0.710 0.499 0.293 0.421 0.423 0.289 0.097 0.675 0.672 0.531

4.5.1. Experimental Conditions

In this experiment, we compared “Ours” in Section 4.4 with the fol-
lowing systems:

• Ours w/o Stage 2: The proposed system without performing
the stage 2 training.

• Ours w/o Stage 1&2: The proposed system with performing
only the stage 3 training.

The fine-tuning for “Ours w/o Stage 2” was performed for 20
epochs using a learning rate ranging from 1 × 10−4 to 1 × 10−7

and batch size of 8. The training for “Ours w/o Stage 1&2” ran 20
epochs using a learning rate ranging from 1×10−3 to 1×10−7 and
batch size of 8. The training dataset and target domain-ID setting
was the same as those used in Section 4.4.

4.5.2. Results and Discussion

The results are shown in Table 3. As the number of multi-stage learn-
ing stages is reduced and the two feature extractors are no longer
pre-trained for the MOS prediction task, the behavior of the learned
models can be seen to approach “Ours w/o SSL” (i.e., lower MSE
and lower correlation-based metrics). This may be desirable in sit-
uations where we want to accurately predict the absolute MOS, but
not when we want to compare different speech synthesis systems. In
summary, these results suggest that the proposed multi-stage learn-
ing is essential for boosting the ability of the SSL features to capture
differences between multiple synthetic speech samples.

This might be because the SSL and spectrogram were combined
and trained before being optimized individually. Due to the different
learning speeds of SSL feature extractor and the spectrogram feature
extractor, the fully connected layer might have resulted in a model
that emphasizes one over the other. Specifically, in this case, the
spectrogram features might have been given more importance, lead-
ing the system to resemble “Ours w/o SSL.”

4.6. Investigation on Dataset

To investigate which datasets described in Section 3.2 were effective
for predicting the MOS for the zoomed-in target, i.e., newly obtained
through listening tests of BVCC’s top-performing systems, we con-
ducted ablation studies on these datasets.

4.6.1. Experimental Conditions

For predicting MOS, we used “Ours” built with the almost same ex-
perimental setting as described in Section 4.4. Here, we changed the
datasets for the training and the data-domain ID for the inference.
Specifically, we trained “Ours” with “All datasets” and that without
{BVCC, BC, SOMOS, sarulab-data}. This experiment enabled us
to examine which dataset was essential for improving the MOS pre-
diction performance in the zoomed-in test situation. In addition, by
examining the prediction results when changing the data-domain ID,
we can verify which domain (i.e. dataset) was closer to the zoomed-
in dataset used in the VMC2024 Track 1. Note that only the mean

values are presented in the results for the BC datasets, even though
the data-domain ID was prepared for each BC dataset.

4.6.2. Results and Discussion

The results are shown on Table 4. In terms of the training datasets,
“All datasets” achieves the best scores. However, in some cases the
scores improve by excluding BVCC or BC from the training data.
In addition, excluding SOMOS or sarulab-data from the training
data tends to degrade the MOS prediction performance significantly.
These results suggest that when building MOS prediction systems to
compare the performance of high-quality speech synthesis, it is cru-
cial to exclude datasets that are likely to contain low-quality speech
systems when training. They also indicate that using MOS datasets
containing as many results as possible from evaluation of synthetic
speech produced by state-of-the-art DNN-based speech synthesis.

Focusing on the difference among data-domain for the MOS
prediction, the MSE is the lowest for sarulab-data (i.e., the 50%
zoomed-in BVCC) and the highest for BVCC, which clearly shows
the effect of range-equalizing bias [6]. However, this tendency is not
observed when comparing the correlation-based metrics. These re-
sults suggest that the negative effects caused by the range-equalizing
bias are dominant in the prediction of the absolute MOS.

Additionally, when comparing the scores of correlation-based
metrics between datasets with a 25% zoomed-in rate and those with
a 12% zoomed-in rate, it can be observed that the scores are better for
the 25% zoomed-in rate datasets in almost all cases. This suggests
that the quality of the speech data used for training was closer to that
of the 25% zoomed-in rate datasets.

5. CONCLUSION

In this paper, we presented our automatic MOS prediction system
(UTMOSv2) submitted to the VMC 2024. Our system achieved first
place in 7 out of 16 metrics in the VMC 2024 Track 1. The submit-
ted T05 system leverages the fusion of spectrogram features from
a pretrained image feature extractor and speech features from pre-
trained speech SSL models. Additionally, multi-stage learning and
the use of multiple datasets were introduced. In the ablation study,
we demonstrated that combining spectrogram features and SSL fea-
tures improves the correlation-based metrics, while the MSE was
best when only the spectrogram feature was used. Furthermore,
the use of a wider range of datasets and multi-stage learning en-
hanced the performance of the MOS prediction. Future work in-
cludes constructing a MOS prediction system not only for the natu-
ralness of synthetic speech but also for other aspects of speech, such
as prosody.
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Table 4: Results for ablation study regarding the training datasets and dataset domains. For example, the second-through-fifth columns list
the MOS prediction performance for the VMC2024 Track 1 evaluation set using “BVCC” as the data-domain. Values in bold face shows the
best result in each column and the underlined values show the worst result in each columns. Only the mean values are presented for the BC
datasets.

(a) Utterance-level results at 25% zoomed-in rate.

BVCC BC SOMOS sarulab-data
Training datasets MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑

All datasets 0.690 0.618 0.613 0.442 0.398 0.620 0.616 0.444 0.326 0.617 0.612 0.441 0.279 0.620 0.615 0.444
w/o BVCC – – – – 0.741 0.668 0.656 0.480 0.444 0.668 0.656 0.480 0.386 0.667 0.655 0.479
w/o BC 0.569 0.531 0.533 0.378 – – – – 0.414 0.528 0.527 0.374 0.329 0.543 0.530 0.377
w/o SOMOS 0.683 0.417 0.411 0.286 0.677 0.417 0.410 0.286 – – – – 0.678 0.416 0.408 0.285
w/o sarulab-data 0.733 0.473 0.470 0.329 0.438 0.475 0.473 0.332 0.592 0.474 0.470 0.330 – – – –

(b) System-level results at 25% zoomed-in rate.

BVCC BC SOMOS sarulab-data
Training datasets MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑

All datasets 0.465 0.922 0.919 0.752 0.167 0.924 0.919 0.754 0.092 0.924 0.916 0.744 0.044 0.923 0.921 0.756
w/o BVCC – – – – 0.487 0.910 0.918 0.748 0.194 0.911 0.918 0.748 0.138 0.910 0.919 0.752
w/o BC 0.284 0.912 0.916 0.746 – – – – 0.133 0.885 0.891 0.725 0.051 0.899 0.911 0.744
w/o SOMOS 0.423 0.714 0.669 0.474 0.415 0.714 0.664 0.472 – – – – 0.416 0.708 0.655 0.464
w/o sarulab-data 0.484 0.750 0.718 0.516 0.179 0.753 0.717 0.518 0.338 0.755 0.720 0.520 – – – –

(c) Utterance-level results at 12% zoomed-in rate.

BVCC BC SOMOS sarulab-data
Training datasets MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑

All datasets 0.459 0.578 0.579 0.404 0.262 0.584 0.584 0.408 0.234 0.579 0.579 0.403 0.238 0.581 0.582 0.406
w/o BVCC – – – – 0.541 0.633 0.626 0.452 0.324 0.636 0.629 0.454 0.297 0.636 0.629 0.454
w/o BC 0.393 0.471 0.473 0.330 – – – – 0.299 0.491 0.493 0.343 0.360 0.442 0.450 0.313
w/o SOMOS 0.447 0.369 0.376 0.257 0.443 0.370 0.375 0.256 – – – – 0.443 0.370 0.378 0.258
w/o sarulab-data 0.484 0.429 0.430 0.293 0.312 0.427 0.431 0.293 0.392 0.427 0.428 0.292 – – – –

(d) System-level results at 12% zoomed-in rate.

BVCC BC SOMOS sarulab-data
Training datasets MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑

All datasets 0.288 0.840 0.854 0.650 0.088 0.844 0.851 0.650 0.056 0.840 0.844 0.642 0.058 0.842 0.838 0.634
w/o BVCC – – – – 0.343 0.823 0.832 0.665 0.128 0.824 0.846 0.681 0.101 0.825 0.836 0.673
w/o BC 0.145 0.826 0.819 0.610 – – – – 0.069 0.804 0.823 0.642 0.122 0.756 0.805 0.602
w/o SOMOS 0.224 0.667 0.696 0.467 0.221 0.665 0.682 0.459 – – – – 0.221 0.665 0.700 0.483
w/o sarulab-data 0.282 0.671 0.647 0.448 0.102 0.674 0.661 0.459 0.186 0.675 0.690 0.483 – – – –
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