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ABSTRACT
We explore cross-dialect text-to-speech (CD-TTS), a task to
synthesize learned speakers’ voices in non-native dialects, es-
pecially in pitch-accent languages. CD-TTS is important for
developing voice agents that naturally communicate with peo-
ple across regions. We present a novel TTS model comprising
three sub-modules to perform competitively at this task. We
first train a backbone TTS model to synthesize dialect speech
from a text conditioned on phoneme-level accent latent vari-
ables (ALVs) extracted from speech by a reference encoder.
Then, we train an ALV predictor to predict ALVs tailored to
a target dialect from input text leveraging our novel multi-
dialect phoneme-level BERT. We conduct multi-dialect TTS
experiments and evaluate the effectiveness of our model by
comparing it with a baseline derived from conventional dialect
TTS methods. The results show that our model improves the
dialectal naturalness of synthetic speech in CD-TTS.

Index Terms— text-to-speech, self-supervised learning,
pitch-accent, accent latent variable

1. INTRODUCTION

Pitch-accent is a crucial prosodic attribute for natural speech
communication in pitch-accent languages. In Japanese, one
of pitch-accent languages, each mora has its corresponding
high or low (H/L) pitch-accent to distinguish homophones.
For instance, both 雨 (rain) and 飴 (candy) have the same
pronunciationあめ (a-me), but their pitch-accents (“HL” and
“LH”) distinguish these words in Tokyo-dialect. Therefore,
typical Japanese text-to-speech (TTS) [1] models take as input
accent labels obtained using accent dictionaries (Fig. 1).

Dialects in pitch-accent languages each have a different
pitch-accent rule. For instance, in Osaka-dialect, one of
Japanese dialects, “LH” pitch-accent is used to pronounce雨
(rain). Therefore, it is essential for dialect TTS in pitch-accent
languages to reproduce the pitch-accent of synthetic speech
tailored to each dialect to avoid miscommunication. How-
ever, building accent dictionaries to obtain the accent labels
corresponding to texts for various dialects is very costly. In-
deed, accent dictionaries are only available for Tokyo-dialect
in Japanese. Therefore, current TTS systems find it challeng-
ing to adapt the pitch-accent of synthetic speech to different
dialects, and this challenge is not well explored.
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Fig. 1. Flowchart of typical Japanese TTS model.
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Fig. 2. Overview of our proposed TTS model.

In this paper, we explore a new task called cross-dialect
(CD)-TTS, which aims to synthesize learned speakers’ voices
in a non-native dialect, especially in pitch-accent languages.
CD-TTS is important for localizing TTS systems by adapt-
ing the pitch-accent of synthetic speech to regional dialects,
leading to natural speech communication between comput-
ers and humans across regions. Note that CD-TTS differs
from existing cross-lingual TTS [2]; specifically, CD-TTS fo-
cuses on several dialects within one specific language, which
have similar but typically different pitch-accent systems and
vocabularies. We propose a novel TTS model for CD-TTS
as illustrated in Fig. 2, incorporating data-driven pitch-accent
modeling using phoneme-level accent latent variables (ALVs).
Our model can automatically predict ALVs tailored to each di-
alect instead of relying on accent dictionaries. Also, the ALV
predictor incorporates a dialect-adapted version of phoneme-
level BERT (PL-BERT) [3], multi-dialect (MD)-PL-BERT, to
improve the accuracy of ALV prediction. The MD-PL-BERT
is pre-trained on our constructed multi-dialect text corpus to
capture both common and distinct textual features across di-
alects. We conduct Japanese multi-dialect TTS experiments
and compare our model with a baseline derived from conven-
tional dialect TTS methods. Audio samples are available on
our demo page 1. Our main contributions are as follows:

• We explore a new task denoted as CD-TTS to synthesize
learned speakers’ voices in a non-native dialect.

• We propose a novel TTS model for CD-TTS that auto-
matically predicts ALVs tailored to each dialect from
text, leveraging our novel MD-PL-BERT.

1https://kyamauchi1023.github.io/yamauchi24slt



• We present the result of evaluation experiments and
demonstrate that leveraging our ALV predictor improves
the dialectal naturalness of synthetic speech in CD-TTS.

2. RELATED WORK
2.1. Prosody transfer
Prosody transfer [4]–[7] is a technology to adapt prosody of
synthetic speech to match that of reference speech while main-
taining the speaker’s voice timbre. Typical prosody transfer
methods extract speaker-independent latent representation of
prosody from speech by a variational autoencoder (VAE) [8]-
based reference encoder. For example, Accent-VITS [9], a
prosody transfer method for Chinese accented speech synthe-
sis, extracts bottleneck (BN) features as prosody features from
pre-trained automatic speech recognition (ASR) model and
encodes them into latent representation by a VAE encoder.

2.2. Data-driven pitch-accent modeling
To address the challenge of Japanese dialect TTS, caused by
the absence of accent dictionaries, Yufune et al. [10] pro-
posed a TTS method utilizing ALVs, instead of accent labels.
They first trained vector-quantized (VQ)-VAE [11] to extract
mora-level quantized latent representation from prosody fea-
tures such as fundamental frequency (F0) of speech. Since the
representation can be regarded as pseudo accent label, they de-
fined it as ALV. They showed that VQ-VAE was more efficient
than VAE used in typical prosody transfer methods for accu-
rately reproducing the natural pitch-accent of synthetic speech
in Japanese. Then, they trained a TTS model conditioned on
ALVs. Also, they trained an ALV predictor that takes an input
text and predicts ALVs corresponding to each mora.

2.3. Self-supervised pre-training on text data for TTS
It has been demonstrated that leveraging self-supervised
pre-training on text data, such as PnG BERT [12] and PL-
BERT [3], effectively improves the prosodic naturalness of
synthetic speech by TTS. PnG BERT is pre-trained on text data
in a self-supervised manner, taking phonemes and graphemes
of text as input. PL-BERT, on the other hand, does not
take graphemes as input; instead, it is pre-trained to predict
graphemes from phonemes, aiming to enhance the robustness
of prosody prediction for unknown graphemes not present in
the training data. In the context of Japanese Tokyo-dialect
TTS, Japanese PnG BERT [13] improves the naturalness of
pitch-accent of synthetic speech by pre-training to predict
accent labels obtained using accent dictionaries.

2.4. Problems of conventional methods for dialect TTS
Yufune et al.’s study [10] focused on single-speaker intra-
dialect TTS (ID-TTS), i.e., synthesizing speech in the same
dialect as the target speaker’s native dialect. Indeed, their
model does not contain the functions to predict pitch-accent

tailored to different dialects or adapt pitch-accent of synthetic
speech to match that of an arbitrary speaker’s reference speech.
Also, while they demonstrated that the naturalness of speech
synthesized using ALVs extracted from ground-truth speech
has improved, the naturalness of speech synthesized using pre-
dicted ALVs was lower than that of speech synthesized without
ALVs, due to the low accuracy of ALV prediction. Note that it
has been demonstrated that inaccurate accent labels generally
degrade the naturalness of synthetic speech [14]. One possi-
ble reason for the low ALV prediction accuracy of their model
is the limited size of existing Japanese dialect speech corpora
(e.g., CPJD [15]), which restricts the available data for train-
ing. However, constructing speech corpora with a sufficient
amount of data for each dialect is very costly. Therefore, a
method to improve the accuracy of ALV prediction without
relying on additional dialect speech corpora is demanded.

Self-supervised pre-training on text data can be expected
to improve the naturalness of pitch-accent for dialect TTS.
However, current text pre-training methods for TTS [13] typ-
ically utilize texts written in the standard language as training
data, lacking mechanisms to learn features that vary across
dialects. Moreover, the availability of text corpora annotated
with the dialect ID remains limited in size. Therefore, a self-
supervised pre-training method that is effective for dialect
pitch-accent prediction is demanded for multi-dialect TTS.

3. METHOD

Fig. 3 illustrates the architecture of the proposed dialect TTS
model, comprising: 1) a backbone TTS model, 2) a reference
encoder, and 3) an ALV predictor. The backbone TTS model
synthesizes dialect speech conditioned on ALVs obtained by
either of the other two modules. The reference encoder ex-
tracts ALVs, phoneme-level quantized latent representation of
prosody. The ALV predictor predicts ALVs corresponding to
each phoneme conditioned on a dialect ID. The ALV predic-
tor incorporates our novel MD-PL-BERT, pre-trained on our
constructed multi-dialect text corpus, to capture both com-
mon and distinct textual features across dialects and to predict
pitch-accent for phrases unique to each dialect. Our model
can synthesize speech from input text and a dialect ID by au-
tomatically predicting ALVs tailored to the target dialect (i.e.,
TTS). Additionally, by inputting an arbitrary speaker’s ref-
erence speech with the desired pitch-accent, the pitch-accent
of the synthetic speech can be adapted to match that of the
reference speech (i.e., pitch-accent transfer).

3.1. Reference encoder
The reference encoder is a module for extracting ALVs from
prosody features of reference speech, enabling data-driven
pitch-accent modeling without reliance on accent dictionaries.
We employ a VQ-VAE-based reference encoder, following Yu-
fune et al.’s study [10]. Note that while Yufune et al. defined
ALV at the mora-level [10], we define it at the phoneme-level.
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Fig. 3. The architecture of our proposed model, consisting of a reference encoder and an ALV predictor. In the first training
stage, the reference encoder and backbone TTS model are trained. In the second training stage, the ALV predictor is trained.

To obtain prosody features related to pitch-accent information,
the reference encoder incorporates a pre-trained ASR model
into the ALV extraction framework, similar to the approach
used in Accent-VITS [9]. Because pitch-accent is necessary
for distinguishing words in pitch-accent languages, features
obtained from a pre-trained ASR model are expected to con-
tain sufficient prosody information.

Specifically, we first feed reference speech into the ASR
model to extract BN features as the output of the ASR
model’s encoder’s final layer. BN features are aggregated
into phoneme-level features using average pooling, guided
by phoneme alignment information, to obtain phoneme-level
ALVs. Subsequently, they are fed into a one-dimensional
convolutional neural network (1D-CNN)-based BN encoder.
Finally, the encoder outputs are quantized by a VQ module to
obtain the quantized indices, i.e., the ALVs.

3.2. ALV predictor incorporating MD-PL-BERT
The ALV predictor is a module to predict ALVs tailored to a
target dialect from input text. We focus on PL-BERT [3], a
self-supervised learning model pre-trained on text data, to im-
prove the accuracy of ALV prediction. However, the original
PL-BERT lacks mechanisms for learning linguistic features
that vary across different dialects, making it challenging to
predict ALVs specific to each dialect. To address this, we pro-
pose MD-PL-BERT, a dialect-adapted version of PL-BERT,
and incorporate it into the ALV predictor. The pre-training
strategy is similar to PL-BERT, but with two key differences.

First, we introduce conditioning PL-BERT on dialect ID,
an identifier that indicates which dialect the input text is writ-
ten in. Specifically, we add a dialect ID to the beginning
of the input phoneme sequence to enable PL-BERT to learn
linguistic features tailored to the specified dialect.

Second, we construct a large-scale multi-dialect text cor-
pus and pre-train MD-PL-BERT on them. While pre-training
MD-PL-BERT requires large-scale multi-dialect text corpora,
the available text corpora annotated with dialect ID are limited
in size. Recent research has demonstrated the effectiveness of

using large language models (LLMs) for dialect translation and
has proposed a method for the automated construction of di-
alect text corpora [16]. Inspired by this approach, we construct
a multi-dialect text corpus by leveraging the data augmenta-
tion through translating texts written in the standard language
(i.e., Tokyo-dialect in Japanese) into a target dialect using an
LLM. Specifically, we prompt a pre-trained LLM to translate
a given Tokyo-dialect sentence into the target dialect using the
following prompt: “Rewrite the following sentences as if they
were in [target dialect]: [sentence written in Tokyo-dialect]”.
The ALV predictor comprises MD-PL-BERT, pre-trained on
this corpus, followed by a fully connected layer that predicts
the ALVs from the output of the final layer of MD-PL-BERT.

3.3. Training and inference

Our model is trained in two stages. In the first stage, the
reference encoder and the backbone TTS model are jointly
trained while the parameters of the pre-trained ASR model
remain frozen. The loss function is the sum of the losses
from the backbone TTS model and the VQ loss [11]. During
training, the target ground-truth speech is used as the reference
speech. In the second stage, the ALV predictor is initialized
with the pre-trained MD-PL-BERT and fine-tuned together
with a fully connected layer. The loss function L used to train
the ALV predictor is the cross-entropy loss (CELoss) between
the ALVs extracted from the target speech by the reference
encoder, z, and the predicted ALVs, ẑ, denoted as:

L = CELoss(z, ẑ) (1)
During inference, our TTS model enables pitch-accent

transfer by synthesizing speech using ALVs extracted from an
arbitrary speaker’s reference speech. This allows for control
of the pitch-accent of synthetic speech by inputting reference
speech with the desired pitch-accent. Pitch-accent transfer can
be seen as a variant of prosody transfer. The key difference is
that prosody transfer primarily focuses on emotion or speaking
style, whereas pitch-accent transfer targets pitch-accent, which
is discrete and more akin to linguistic information.



4. EXPERIMENTS

We evaluate our method in both ID-TTS and CD-TTS. The
experiments focus on synthesizing speech in Osaka-dialect,
one of Japanese dialects, by a native Osaka-dialect speaker
(i.e., ID-TTS) and a Tokyo-dialect speaker (i.e., CD-TTS).

4.1. Experimental conditions
Training dataset: We used JSUT [17] and JMD 2 [18]. JSUT
consists of approximately 7,700 utterances by a single Tokyo-
dialect speaker (female), while JMD includes 1,300 utterances
by native dialect speakers for each dialect. We mixed JSUT
and the JMD-Osaka subset including voices by a single native
Osaka-dialect speaker (female) and divided this mixed dataset
into training (8,484 utterances), validation (256 utterances),
and test (256 utterances) subsets.

Evaluation dataset: To evaluate the effectiveness of
pitch-accent transfer using reference speech by an unseen
speaker not present in the training dataset, we used speech
in CPJD [15] as reference speech. CPJD is a multi-dialect
speech corpus collected through crowdsourcing, containing
250 utterances for each dialect. We used the CPJD-Osaka sub-
set including voices by a single native Osaka-dialect speaker
(male) as reference speech for pitch-accent transfer.

Training setup: BN features were extracted by the en-
coder of the pre-trained Whisper large-v2 model3 [19]. The
phoneme alignment information to aggregate BN features
into phoneme-level features was obtained using Julius [20].
The BN encoder first projects BN features aggregated at the
phoneme level into 256 dimensions and feeds them into a stack
of two 1D-CNN layers with a kernel size of 3, stride of 1, and
filter size of 256. This process outputs phoneme-level 256-
dimensional continuous vectors. Subsequently, the vectors are
quantized into four classes, following the previous Japanese di-
alect TTS study [10]. Finally, the quantized vectors (i.e., ALV
embeddings) are added to 256-dimensional phoneme embed-
dings. Note that the indices of the quantized vectors are the
ALVs. The weight of the commitment loss in VQ loss [11] was
set to 4.0. Also, we used FastSpeech 2 [21] as the backbone
TTS model following the publicly available implementation
(FastSpeech2-JSUT4) for the network architecture and train-
ing settings. That is, for the first stage of training, the model
was trained with a batch size of 32, learning rate of 0.0625,
and 100k iterations in 5 hours. The pre-trained HiFi-GAN
UNIVERSAL V1 model5 [22] was used as a vocoder.

Pre-training: For pre-training MD-PL-BERT, we used
Japanese Wikipedia corpus6, containing approximately 1.0M
documents, and ReazonSpeech small7, containing approxi-

2https://sites.google.com/site/shinnosuketakamichi/
research-topics/jmd_corpus?authuser=0

3https://huggingface.co/openai/whisper-large-v2
4https://github.com/Wataru-Nakata/FastSpeech2-JSUT
5https://github.com/jik876/hifi-gan
6https://dumps.wikimedia.org/
7https://huggingface.co/datasets/reazon-research/reazonspeech

mately 62K utterances designed for building a Japanese ASR
model. We used transcriptions in ReazonSpeech as text dataset
written in Tokyo-dialect and translate them into Osaka-dialect.
MD-PL-BERT was initialized by PL-BERT pre-trained on
Wikipedia corpus and then pre-trained on transcriptions in
ReazonSpeech with the data augmentation described in Sec-
tion 3.2. We used Japanese Llama 2 [23]8, a.k.a., Swal-
low 13B9 as the LLM for dialect translation. We followed the
network architecture and pre-training strategy of PL-BERT
described in the official implementation (PL-BERT10). To tok-
enize Japanese text into subwords, we used a publicly available
tokenizer11. For grapheme-to-phoneme (G2P) conversion, we
used OpenJTalk12. PL-BERT was pre-trained on Wikipedia
corpus with a batch size of 8, learning rate of 4.0 × 10−6, and
10M iterations in 10 days. MD-PL-BERT was pre-trained
with a batch size of 16, learning rate of 5.0 × 10−5, and 100k
iterations in 10 hours. For the second stage of training the pro-
posed model, it was trained with a batch size of 32, learning
rate of 0.001, and 10k iterations in 5 hours.

Model parameters and computational resources: The
backbone TTS model, the reference encoder, and the ALV
predictor contained 35M, 790K, and 6M trainable parameters,
respectively. All the models were trained on a single Nvidia
A100 GPU using the Adam optimizer [24] with the linear
scheduler of learning rate with warm up steps of 4000.

Task definition and compared models: We evaluated our
proposed model through two tasks: 1) ID-TTS and 2) CD-TTS.
The former and latter aim to synthesize speech 1) in the same
dialect as the target speaker’s native dialect and 2) in a different
dialect from the target speaker’s native dialect, respectively.
The target speakers for ID-TTS and CD-TTS were defined as
the JMD-Osaka speaker and the JSUT speaker, respectively.
Input texts for TTS are sampled from transcriptions in CPJD-
Osaka. We mainly evaluated the following models:

• FS2 (baseline): The original FastSpeech 2
• FS2-AP (proposed): The proposed model using ALVs

predicted by the ALV predictor form input text
• FS2-REF (proposed): The proposed model using ALVs

extracted from reference speech

4.2. Evaluations
We conducted subjective and objective evaluations to compare
the proposed model with an existing baseline.

Mean opinion score (MOS) tests: We conducted MOS
tests via crowdsourcing to assess the naturalness of speech and
the dialectal naturalness (i.e., dialectality) of pitch-accent for
each method. Participants evaluated randomly selected syn-
thetic speech samples by each method or natural speech sam-
ples in CPJD from two viewpoints: 1) naturalness (N-MOS)

8https://llama.meta.com/
9https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-hf

10https://github.com/yl4579/PL-BERT
11https://huggingface.co/tohoku-nlp/bert-base-japanese-whole-word-masking
12https://open-jtalk.sp.nitech.ac.jp



Table 1. Results of comparing the performance of FS2-AP-
Scratch and FS2 in ID-TTS.

A vs. B Naturalness Dialectality
FS2-AP-Scratch vs. FS2 0.250 vs. 0.750 0.227 vs. 0.773

and 2) dialectality (D-MOS). The former and latter mean
whether 1) it sounds naturally human-like and 2) its pitch-
accent sounds natural as Osaka-dialect, not Tokyo-dialect, on
a 5-point scale from 1 (very unnatural) to 5 (very natural), re-
spectively. For both ID-TTS and CD-TTS, 35 native Japanese
speakers evaluated 24 randomly presented speech samples.

Pairwise comparisons: We also conducted several pref-
erence AB tests on the naturalness and dialectality of synthetic
speech to determine the appropriate baseline and for ablation
studies of the proposed model. Twenty listeners participated
in the tests via crowdsourcing, and each listener evaluated ten
pairs of synthetic speech samples. In the following subsec-
tion, bold values in the tables showing the results of the AB
test indicate that significant differences are determined by a
Student’s 𝑡-test at a 5% significance level.

Speaker similarity: To verify that ALVs are speaker-
independent, we measured the speaker similarity of synthetic
speech to the target speaker’s natural speech, using cosine
similarity between x-vectors [25] (SIM). Specifically, we com-
puted the mean of SIM between the averaged x-vector among
all speech samples of the target speaker in the test set and
the x-vector of each synthetic speech. We obtained x-vectors
using a pre-trained model13.

4.3. Results and discussion
What is the appropriate baseline in this study? As well
as FS2, one can regard FS2-AP without initialing the model
parameter on the basis of the MD-PL-BERT pre-training (i.e.,
FS2-AP-Scratch) as the candidate baseline. The reason is that
the model structure and two-stage training of FS2-AP-Scratch
are similar to those used in Yufune et al.’s study [10]. There-
fore, we first compared these two methods in a preference
AB test in ID-TTS. As shown in Table 1, FS2 significantly
outperformed FS2-AP-Scratch, indicating that the prediction
performance of ALV predictor without pre-training on text
datasets is poor and inaccurate ALV prediction makes the
naturalness of synthetic speech even worse. This result is con-
sistent with the result of Yufune et al.’s study [10] mentioned
in Section 2.4. From this result, we decided to use FS2 as the
baseline to be compared with the proposed model.

Can our models improve dialect TTS performance?
Table 2 shows the results of MOS tests. First, from the results
of ID-TTS shown in Table 2(a), no significant difference in
MOS was observed between FS2 and FS2-AP. Meanwhile,
pitch-accent transfer through reference speech input tended to
improve D-MOS, although the improvement was not statisti-
cally significant. Second, from the results of CD-TTS shown

13https://github.com/sarulab-speech/xvector_jtubespeech

Table 2. Results of MOS test with 95% confidence inter-
val and computed SIM. REF represents the reference speech.
Bold values are significantly higher than those of FS2 accord-
ing to the results of a student’s 𝑡-test at a 5% significance level.

(a) ID-TTS: Synthesis of Osaka-dialect speech by Osaka-dialect speaker

Method Target speaker N-MOS (↑) D-MOS (↑) SIM (↑)
FS2 JMD (Osaka) 3.30 ± 0.12 3.22 ± 0.13 0.990

FS2-AP JMD (Osaka) 3.31 ± 0.13 3.26 ± 0.13 0.991
FS2-REF JMD (Osaka) 3.23 ± 0.12 3.30 ± 0.12 0.992

REF CPJD (Osaka) 3.89 ± 0.14 4.38 ± 0.09 -
(b) CD-TTS: Synthesis of Osaka-dialect speech by Tokyo-dialect speaker

Method Target speaker N-MOS (↑) D-MOS (↑) SIM (↑)
FS2 JSUT (Tokyo) 3.57 ± 0.13 2.62 ± 0.13 0.990

FS2-AP JSUT (Tokyo) 3.52 ± 0.13 3.00 ± 0.15 0.990
FS2-REF JSUT (Tokyo) 3.58 ± 0.12 3.05 ± 0.14 0.990

REF CPJD (Osaka) 4.39 ± 0.10 4.32 ± 0.13 -

Table 3. Results of comparing the performance of FS2 and
FS2-AP in CD-TTS by native Osaka-dialect speakers.

A vs. B Naturalness Dialectality
FS2 vs. FS2-AP 0.506 vs. 0.494 0.387 vs. 0.613

in Table 2(b), FS2-AP achieved significantly higher D-MOS
than FS2. This indicates that the ALV predictor learned typ-
ical accent representation of Osaka-dialect, and the proposed
model was effective in improving the dialectality of synthetic
speech in CD-TTS. Furthermore, pitch-accent transfer through
reference speech input (i.e., FS2-REF) significantly improved
D-MOS compared to FS2. Also, using ALVs extracted from
reference speech by a different speaker from the target speaker
did not degrade the speaker similarity to the target speaker.
This demonstrates that our model enables pitch-accent trans-
fer through an unseen speaker’s reference speech input.

Is the improvement significant for native Osaka-dialect
speakers? We asked eight native Osaka-dialect speakers to
evaluate the naturalness and dialectality of synthetic speech by
FS2 and FS2-AP in a preference AB test. As shown in Table 3,
FS2-AP significantly outperformed FS2 in dialectality, while
maintaining the naturalness. This result demonstrates the ef-
fectiveness of the proposed TTS model is perceivable for not
only crowdsourced listeners but also native dialect speakers.

4.4. Ablation study

Are BN features effective for pitch-accent transfer? Instead
of BN features, F0 can be used as a prosody feature for ALV
extraction, similar to Yufune et al.’s method [10]. Therefore,
we compared the two prosody features, BN and F0, in the
preference AB tests. To obtain speaker-independent prosody
features, we normalized F0 in an utterance-wise manner. In
addition, we linearly interpolated unvoiced regions of F0 in
the phoneme-level average pooling. We used WORLD [26]
to extract F0 from speech. Also, we set the target speaker to



Table 4. Results of comparing the performance of pitch-
accent transfer by FS2-REF using BN feature and F0 as
prosody features.

A vs. B Naturalness Dialectality
F0 vs. BN 0.400 vs. 0.600 0.424 vs. 0.576

Table 5. BLUE@4 and BERTScore between Osaka-dialect
sentences and original (Saitama-dialect) sentences or sen-
tences translated into Osaka-dialect. Bold scores are better.

Text BLEU@4 (↑) BERTScore (↑)
Original 0.370 0.873

Translated 0.401 0.882

Table 6. Results of comparing the absence of data augmenta-
tion (DA) by LLM-based dialect translation in CD-TTS.

A vs. B Naturalness Dialectality
w/o DA vs. w/ DA 0.491 vs. 0.509 0.343 vs. 0.657

the JSUT speaker. The evaluation results are shown in Table
4. From this table, BN significantly outperformed F0 in both
evaluation cases, demonstrating the effectiveness of BN for
ALV extraction. One possible reason is that while F0 is an
acoustic feature, BN features can be considered as linguistic
features acquired through the ASR task.

How do ALVs influence the pitch-accent of synthetic
speech? For TTS in pitch-accent languages, it is desirable
that humans can easily correct errors in the pitch-accent of
synthetic speech. Therefore, we analyzed how ALVs influ-
ence the pitch-accent of synthetic speech to investigate the
controllability and interpretability of ALVs. Specifically, we
extracted log F0 (logarithm of fundamental frequency) of syn-
thetic speech and aggregated it at the phoneme-level. The
distribution was then plotted for each corresponding ALV. We
used FS2-REF with the target speaker being the JMD speaker
and utilized the CPJD corpus as reference speech. The results
are shown in Fig. 4. It can be observed that log F0 of synthetic
speech varies according to ALV classes. Specifically, log F0
for the intervals corresponding to ALV value 0 < 1 < 2 < 3
tends to increase in order. This suggests that ALVs can be in-
terpreted as four categorical levels of pitch in synthetic speech
and regarded as pseudo high-low pitch-accent labels.

Is the data augmentation by LLM-based dialect trans-
lation effective in improving the dialectality score? To
verify the effectiveness of dialect translation by LLM as data
augmentation, we initially conducted objective evaluations on
translation accuracy. We utilized transcriptions from CPJD,
which contains semantically parallel transcriptions in multi-
ple dialects. Initially, we translated 250 transcriptions written
in Saitama-dialect, the dialect closest to Tokyo-dialect within
CPJD, into Osaka-dialect using an LLM. Subsequently, we
measured the similarity between the translated transcriptions
and those originally written in Osaka-dialect in CPJD using

ALV value

lo
g 

F0

Fig. 4. The violinplot of logarithmic fundamental frequency
(log F0) aggrigated by ALV value (0, 1, 2, or 3).

BLEU [27] and BERTScore [28]. As shown in Table 5, sen-
tences translated by the LLM are more similar to Osaka-dialect
than the original sentences. This result indicates that the LLM
has the ability for dialect translation.

We also conducted a subjective evaluation to assess the
effectiveness of our MD-PL-BERT compared to the original
PL-BERT. Specifically, we compared two models in the pref-
erence AB tests: our FS2-AP incorporating MD-PL-BERT
pre-trained with the data augmentation and the original PL-
BERT pre-trained without the data augmentation. As shown
in Table 6, our MD-PL-BERT, pre-trained on the multi-dialect
text corpus constructed through the data augmentation, signif-
icantly improved the dialectality of synthetic speech.

5. CONCLUSIONS

We explored a new task called cross-dialect text-to-speech
(CD-TTS), which aims to synthesize learned speakers’ voices
in non-native dialects. To address this, we proposed a novel
TTS model comprising three sub-modules designed to per-
form effectively in this task. We evaluated its performance not
only on intra-dialect (ID)-TTS but also on CD-TTS through
a series of subjective evaluations. The results show that our
model improves the dialectality of synthetic dialect speech in
CD-TTS without degrading the performance of ID-TTS.

In the future, we plan to investigate the effectiveness of our
proposed model in dialect TTS using more dialects. We also
plan to incorporate machine learning techniques used to en-
hance the performance of cross-lingual TTS, such as domain
adaptation [29] and mutual information minimization [2], into
our model for CD-TTS. Moreover, dialect TTS faces chal-
lenges not only with the lack of accent dictionaries but also
with G2P converters. Data-driven modeling of phoneme la-
bels without reliance on G2P converters is also a future task.
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