DNN-based Speaker Embedding Using Subjective Inter-speaker Similarity for Multi-speaker Speech Synthesis

Yuki Saito, Shinnosuke Takamichi, and Hiroshi Saruwatari (The University of Tokyo, Japan)

1. Research highlights
- Purpose: learning speaker representation that is correlated with human speech perception
- Approach: using crowdsourced subjective inter-speaker similarity scores for training speaker embedding model
- Results: obtaining speaker embedding that
 1. is highly correlated with the similarity scores
 2. improves speech quality in multi-speaker speech synthesis

2. Conventional speaker embedding
- One-hot speaker code
 - N_s-dim. discrete vector (ID for pre-stored N_s speakers)
 - Pros: high simplicity when N_s is small
 - Cons: low interpretability & scalability
- d-vector
 - N_d-dim. continuous vector derived from speaker recognition
 - Applications: speaker verification & voice conversion
 - Training: minimizing speaker recognition loss (cross-entropy)

3. Proposed speaker embedding
- Large scale scoring of subjective inter-speaker similarity
 - Crowdsourcing the similarity scores involving 4,000+ listeners
 - # of listeners per one speaker pair = at least 10

Evaluation:
- Similarity vector embedding
 - Training DNN to predict a similarity score vector $s \in \mathbb{S}$

- Similarity matrix embedding
 - Training DNN using the similarity score matrix \mathbb{S} as a constraint on coordinates of speaker embedding

4. Experimental evaluation
- Dataset: JNAS - 153 Japanese females
 - Training data: 140 females (F01\text{--}F03)
 - Evaluation data: 13 females (F01\text{--}F03)
- Vocoder: STRAIGHT
- Methods:
 1. d-vec.: trained by speaker recognition
 2. Sim. (vec): trained by similarity vector embedding
 3. Sim. (mat): trained by similarity matrix embedding
- Results: obtaining speaker embedding that is correlated with the similarity scores!
 - Correlation Approach: using crowdsourced subjective inter-speaker scores!

References: