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Overview of This Talk

● We propose a new task: Spatial Voice Conversion (Spatial VC)

○ VC preserving spatial Information and non-target signals

● We propose a baseline method for spatia VC

○ Combining BSS and VC (BSS: blind source separation)

● We identify key challenges inherent in Spatial VC

○ Preserving spatial information may degrade audio quality
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● Convert speech to another speaker’s speech (same linguistic content)
● Conventional studies tend to …

○ Deal with monaural signal (single channel)
○ Remove non-target audio (e.g., background noise) [1]
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Background: Voice Conversion (VC)

Welcome to Kos! Welcome to Kos!

VC



Background: Human Hearing

● Stereo hearing (not monaural)
○ Recognize spatial information (e.g., direction of the speaker)

● Even while focusing on a specific speech, other signals are still processed
○ For example, if an accident happens, we can recognize it
○ Non-target signals should not always be removed

5

Recognize spatial information Process non-target signals
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Related works
● Example 1: Noisy-to-noisy VC [2]

○ Preserve noise in input signal (not removed)
● Example 2: Stereo speech enhancement preserving spatial-cue [3]

○ Apply speech enhancement to two speakers’s mixed speech
○ Output left speaker’s speech to left-ch (maintain spatial cue)

● These studied are based on spatial information and non-target signals

Noisy-to-noisy VC Stereo speech enhacement
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Goal: Spatial VC enables 
● Talk with virtual avatar in Mixed Reality (MR)

Real world Mixed Reality

Convert to virtual avater



9

Task Description

● Input: Recording of mixed speech (VC source + non target)

○ Multi-channel signal (containing spatial information)

● Output: Recording of mixed speech (VC target + non target)

Spatial VC

Input Output
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Problem Formulation

● Input: Sum of VC source speech and non-target signals

○ : VC source speech,                        : Non-target signals

○ : Transfer function from i-th source to j-th microphone

● Output: Applying VC exclusively to VC source speech

○ : Voice Conversion
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Method: Overview

Mixed VC
souce

Non
target

VC
souce

Non
target

VC
target

Mixed

Spatial VC
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Method: Blind Source Separation (BSS)
● Purpose of this step

○ Enhance VC-source speaker’s voice
○ Extract non-target signals (to preserve non-target information)

● Apply BSS to obtain each signal separately

Mixed

Mixed
BSS

VC
souce

Non
target
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Method: Projection Back (in BSS)
● BSS is based on statistical independence, but cannot determine scale
● BSS output introduces a constant scaling factor (resulting in distortion)
● Projection Back: Determine scaling factor to reproduce microphone signal

STFT of
1st microphone

New separation 
matrix

STFT of
observed signals

Summation of
separated signals

Separation matrix
determined by BSS

By PB, we update
separation matrix
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Method: Voice Conversion (VC)
● Apply VC to extracted VC source speaker’s speech
● This step: noisy-to-clean setting

○ Non-target signals are extratec in another channel
○ This channel can remove non-target signal

We can apply
conventional VC!

VC

We can apply
conventional VC!
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Method: Remix 1
● Simple approach: Apply inverse matrix of separation matrix (                          )

○ “Mixing” is inverse process of “Separation”
○ Each component of          is expected to be transfer function

● In reality, this may degrade audio quality of VC output!
○ After PB procedure,          correspond to relative transfer function 

■ From PB-target microphone to another microphone)
○ This implicitly include unstable inverse filter



17

Method: Remix 2
● Another approach: Direct estimation of transfer function

○ We use steering vector as estimation

■ This model is based on the direction of arrival (DoA)

○ This model does not account for other spatial factors, (e.g., reverberation)

● For non-target signals, we applyinverse of separation matrix

Steering vector
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Settings: Test Data

● Simulated with pyroomacoustics [4]

○ Reverberation time (RT60): Approx. 200ms

○ Speaker: Randomly sampled from 10 speakers in JVS corpus [5]

Observed signals Desired signals

Spatial VC



Settings: Proposed Method
● BSS: Geometrically Constrained Independent Vector Analysis (GC-IVA) [6]

○ Features of GC-IVA:
■ Based on statistical independence of source signals
■ Utilize spatial regularization to specify VC-source speaker

○ Challenges in “Remixing” with inverse matrix:
■ Issues also arise with other BSS methods (e.g., ILRMA [7])
■ This problem is due to PB (common in linear BSS methods)

● VC: DDSP-SVC [8]
○ Open-source many-to-many voice conversion model
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Compared Methods
● Ideal: Simulated desired signal (for comparison)
● Inverse: Spatial VC using inverse matrix for remixing

○ Preserve spatial information, but degrade quality
● Steering: Spatial VC using steering vector for remixing

○ Maintain audio quality, but discard spatial information except DoA.

Inverse Steering

Inverse of separation matrix
Steering vector
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Results: Acoustic Quality

● Calculated Mean Opinion Score (MOS) on naturalness

● “Inverse” exhibited a significantly lower score

○ Attributed to right channel (=other than PB target)

● Indicating: Inverse matrix degrade audio quality

MOS (↑)
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Results: Spatial Information

● Calculated Log-determinant divergence (LDD) [9] of spatial covariance 

matrix from “Ideal” to “Inverse” and “Steering”

○ Indicator for accuracy of spatial information reproduction

● “Inverse” is better than “Steering”

● Indicating: Steering discards spatial information (e.g., reverberation)

LDD (↓)



Conclusion

● We proposed a new task: Spatial Voice Conversion (Spatial VC)

○ VC preserving spatial Information and non-target signals

● We proposed a baseline method for spatia VC

○ Combining BSS and VC (BSS: blind source separation)

● We identified key challenges inherent in Spatial VC

○ Preserving spatial information may degrade audio quality
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