Phase reconstruction from amplitude spectrograms based on von-Mises-distribution deep neural network

Shinnosuke Takamichi^{*1}, Yuki Saito^{*1}, Norihiro Takamune^{*1}, Daichi Kitamura^{*2}, and Hiroshi Saruwatari^{*1}

*1: Univ. of Tokyo, Japan, *2: National Institute of Tech., Kagawa College, Japan

Hypothesis: phase reconstruction from amplitude spectrograms based on DNNs

Phase reconstruction

Audio signal processing often processes amplitude spectrograms. Speech synthesis is shifting from vocoder params. to amplitudes.

DNN-based phase reconstruction

Can we train DNNs to predict the phase?

Isotropic-Gaussian-distribution DNN (mean squared error training) is not suitable because phase is a periodic variable.

Our approach

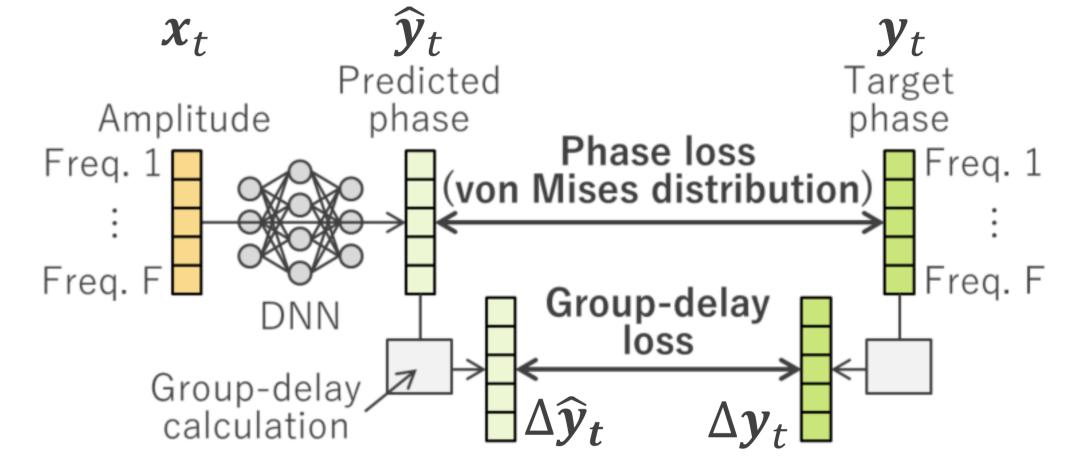
Propose a novel DNN that has the von Mises distribution which is a probability distribution for a periodic variable. Introduce group delays that has strong relationship to the amplitude of speech.

Griffin-Lim phase reconstruction method^[1] provides unnatural artifacts in speech. г Griffin-Lim method [1] –

A phase reconstruction method by iterating STFT and inverse STFT.

1) DNN can predict group delay accurately more than phases, and 2) our methods achieve better speech quality than the conventional Griffin-Lim method.

Proposed method: von-Mises-distribution DNN-based phase reconstruction


rvon Mises distribution and DNN-based phase reconstruction

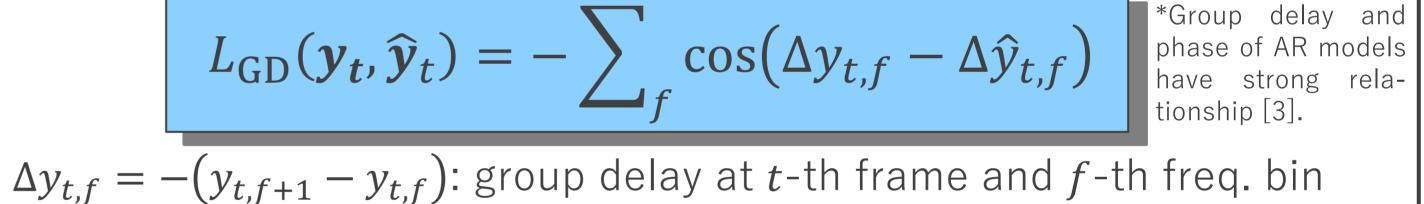
von Mises (vM) distribution^[3] DNN-based phase reconstruction $\blacksquare P(\mathbf{y};\boldsymbol{\mu},\boldsymbol{\kappa}) = e^{\kappa \cos(y-\boldsymbol{\mu})}/2\pi I_0(\boldsymbol{\kappa})$ μ : mean, κ : cnocentration $I_0(\cdot)$: Modified Bessel function

Negative log likelihood (μ: parameter) $\square -\log P(y; \mu, \kappa) \propto -\cos(y - \mu)$

 \blacksquare DNN that convert an amplitude x_t to phase y_t (t is the frame index.)

Loss for DNN training Phase loss derived from vM dist. Group-delay loss

1) Phase loss

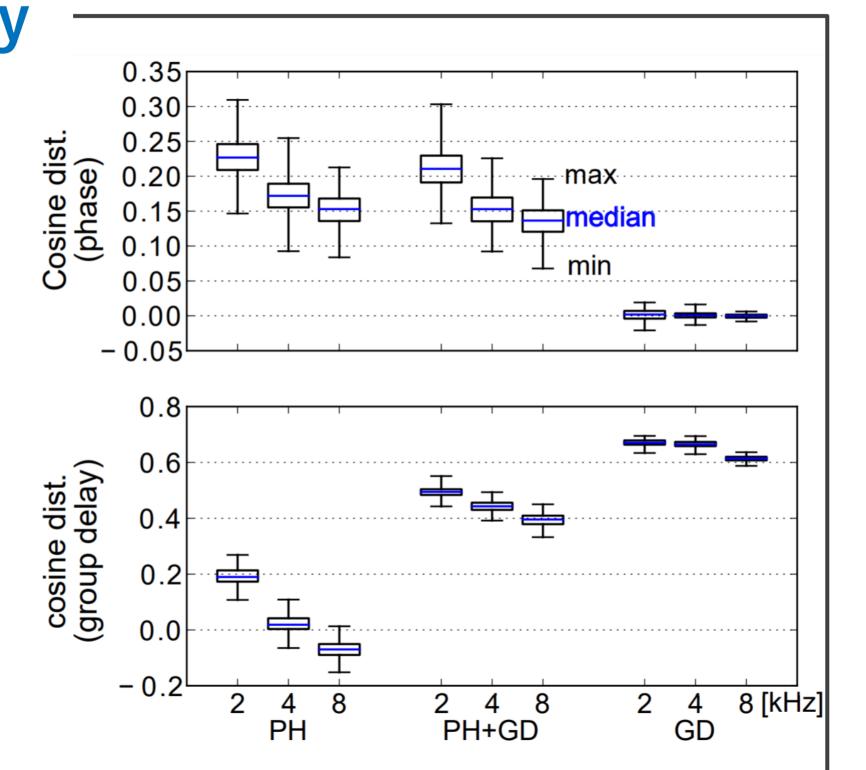

Maximum likelihood estimation of vM distribution.

$$L_{\text{PH}}(\boldsymbol{y_t}, \boldsymbol{\hat{y}_t}) = -\sum_f \cos(y_{t,f} - \boldsymbol{\hat{y}_{t,f}})$$

-2) Group-delay loss

Approximate group delay with 1st-order difference.

 $y_{t,f}$: phase at t-th frame and f-th freq. bin


Evaluation: prediction accuracy, effects to speech quality, and improvements by group delay

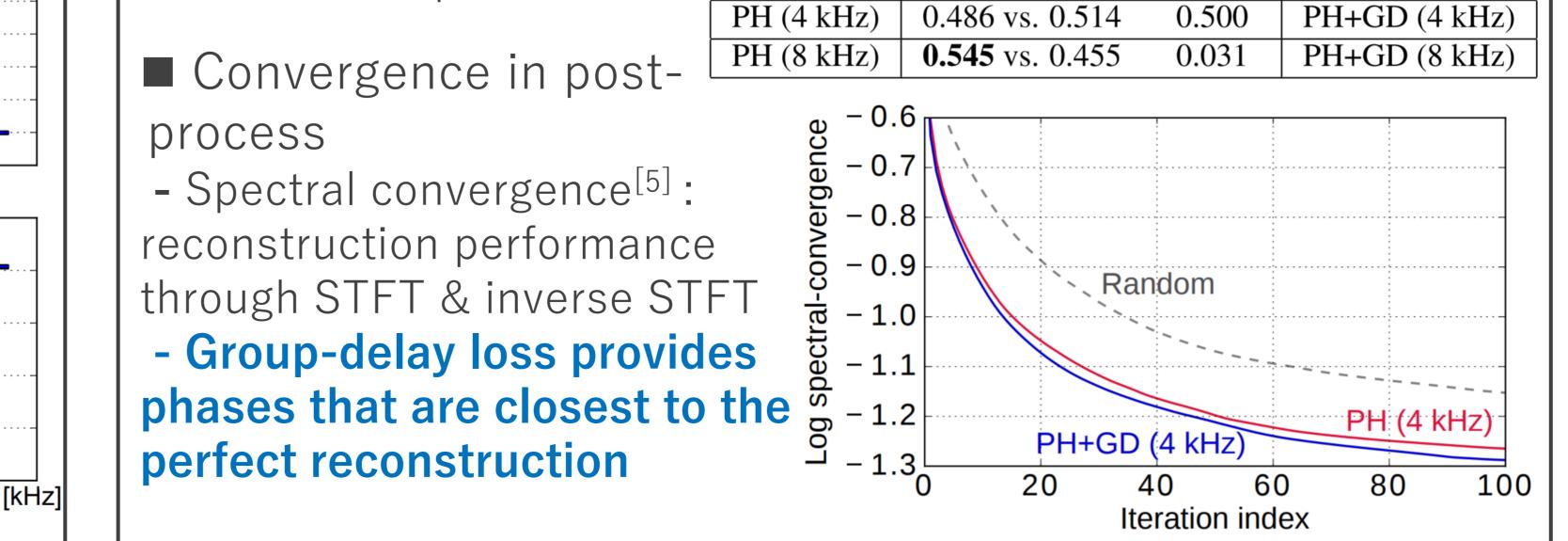
Contents	Value/Settings		
Training / test data	JSUT speech corpus ^[4] 5000 / 300 utts.		
Sampling freq.	16 kHz		
Frame shift, FFT taps	80 samples (5 ms), 512 samples		
DNN input	Log amplitudes at current ± 2 frames		
DNN output	Phase (3 types: 0-2kHz, 0-4kHz, 0-8kHz)		
DNN architecture	Feed-Forward w/ gated activation units		
Post-process	Phase refinement by the Griffin-Lim method		

 -2) Speech quality – Evaluation methods Preference AB tests on 	Preference AB tests by 30 listeners on crowdsourcing			
	Method A	Scores	<i>p</i> -value	Method B
speech quality	Griffin-Lim	0.497 vs. 0.503	0.871	PH (2 kHz)
	Griffin-Lim	0.280 vs. 0.720	$< 10^{-9}$	PH (4 kHz)
Results	Griffin-Lim	0.277 vs. 0.723	$< 10^{-9}$	PH (8 kHz)
- Better than Griffin-Lim	Griffin-Lim	0.453 vs. 0.547	0.022	PH+GD (2 kHz)
	Griffin-Lim	0.233 vs. 0.767	$< 10^{-9}$	PH+GD (4 kHz)
 Multi-task learning a- 	Griffin-Lim	0.247 vs. 0.753	$< 10^{-9}$	PH+GD (8 kHz)
chieves better in all	Griffin-Lim	0.447 vs. 0.553	0.009	GD (2 kHz)
	Griffin-Lim	0.463 vs. 0.537	0.073	GD (4 kHz)
settings	Griffin-Lim	0.490 vs. 0.510	0.619	GD (8 kHz)

[1] Prediction accuracy

Compared systems

-3) Improvements by group-delay loss


Speech quality

- Better than phase loss

1		L		
Method A	Scores	<i>p</i> -value	Method B	
PH (2 kHz)	0.487 vs. 0.513	0.514	PH+GD (2 kHz)	

- PH: Phase loss only
- GD: Group-delay loss only - PH+GD: Multi-task learning
- Evaluation method - Cosine distance

Results - Group delay is estimated accurately more than phase.

Reference

[1] Griffin et al., IEEE Trans., 1984.
[2] Bishop, Springer
[5] Sturmel et al., Intl. Conf. on Digital Audio Effects, 2011. [2] Bishop, Springer, 2006. [3] Itakura et al., Proc. ICASSP, 1987. [4] Sonobe et al., arXiv, 2007.

Saruwatari Lab., The University of Tokyo

IWAENC2018, Tokyo, Japan

2018@Shinnosuke Takamichi Sep. 18, 2018