High-Quality Statistical Parametric Speech Synthesis Using Generative Adversarial Networks

48-166605 Yuki Saito Supervisor: Prof. Hiroshi Saruwatari

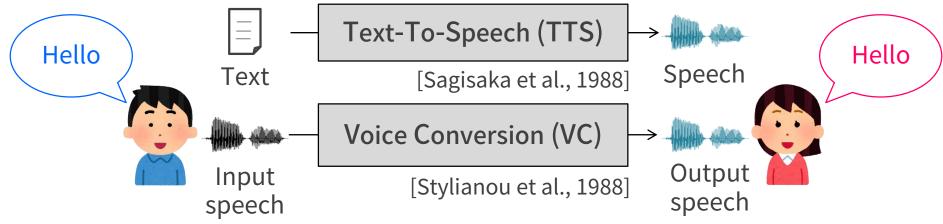
Saruwatari lab. (System #1)

©Yuki Saito, 2018/01/25

Research Field: Speech Synthesis

Speech Synthesis

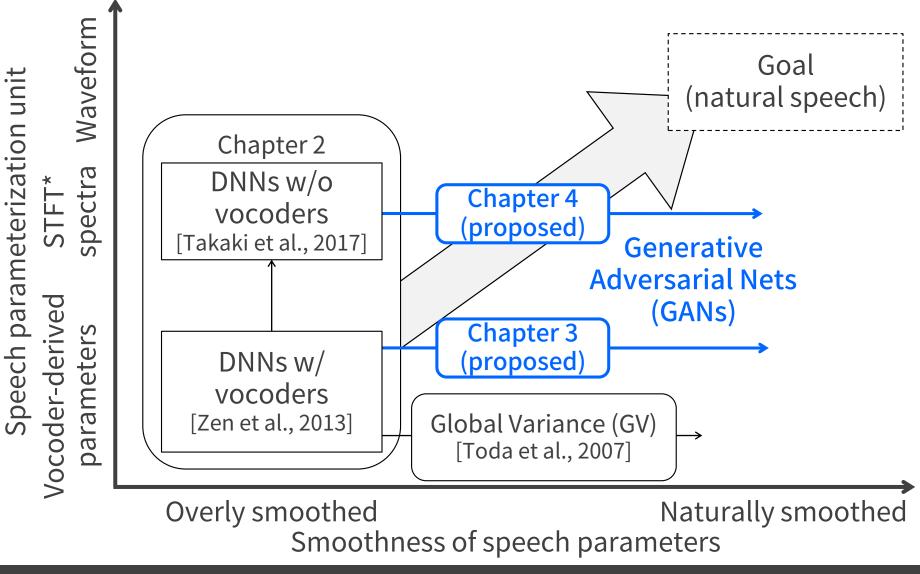
Technique for synthesizing speech using computer



Applications

Speech communication assistance (e.g., speech translation) Entertainments (e.g., singing voice conversion) DNN-based speech synthesis* [Zen et al. 2013] High flexibility but low speech quality

Thesis Overview



STFT: Short-Term Fourier Transform

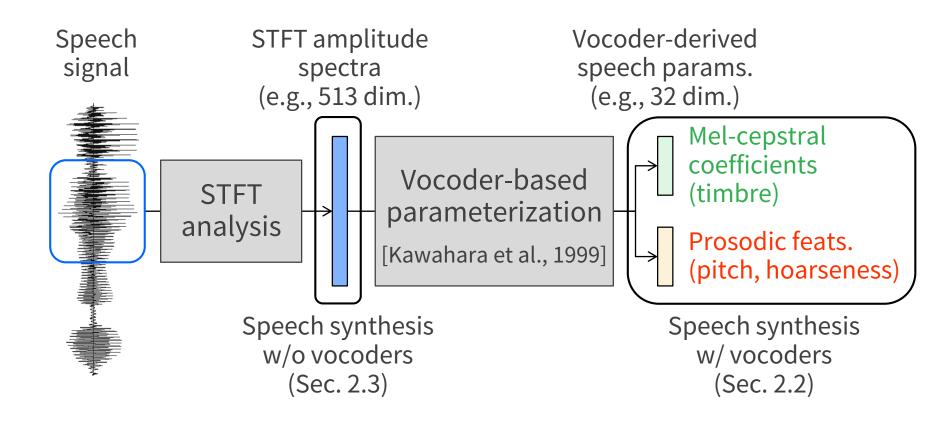
Table of Contents

Chapter 1. Introduction

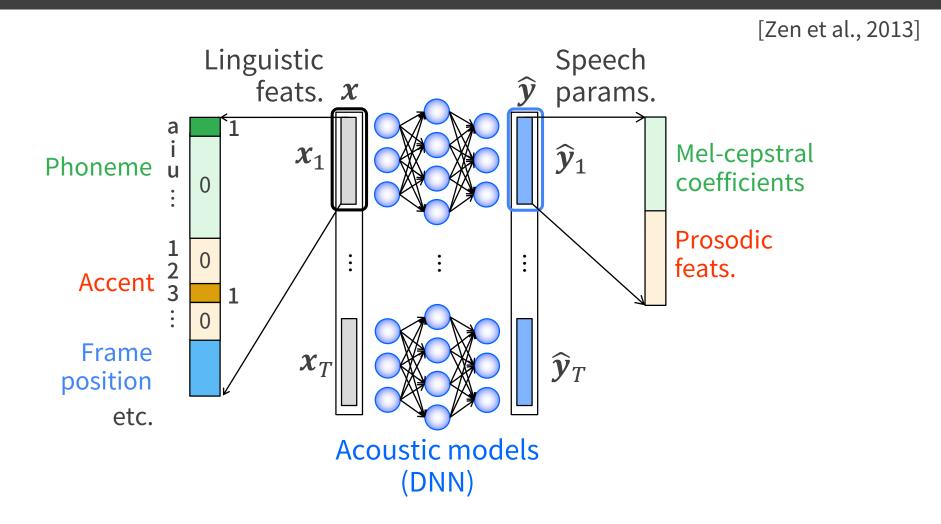
Chapter 2. Speech Synthesis Using DNNs

Chapter 3. Speech Synthesis Using GANs w/ Vocoders Chapter 4. Speech Synthesis Using GANs w/o Vocoders Chapter 5. Conclusion

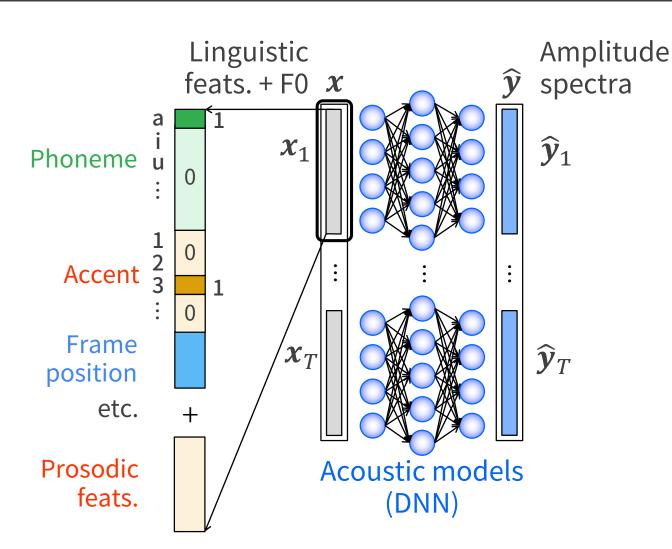
Speech Analysis and Parameter Extraction



DNN-based Speech Synthesis w/ Vocoders

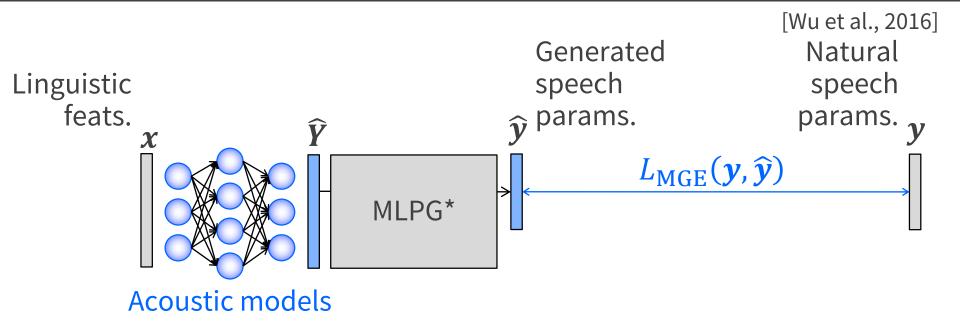


DNN-based Speech Synthesis w/o Vocoders



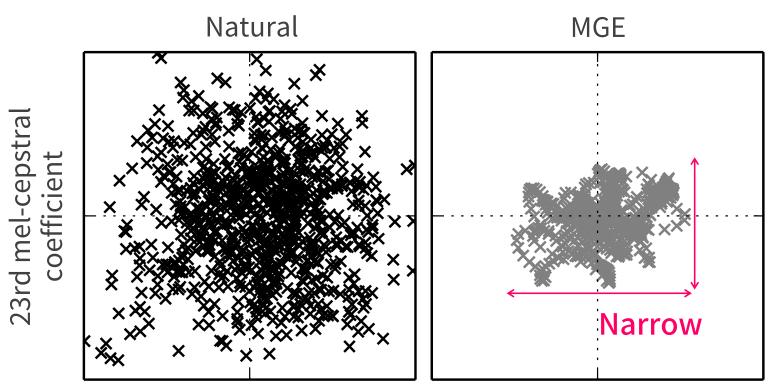
[Takaki et al., 2017]

Minimum Generation Error (MGE) Training Algorithm



$$L_{\text{MGE}}(\boldsymbol{y}, \widehat{\boldsymbol{y}}) = \frac{1}{T} (\widehat{\boldsymbol{y}} - \boldsymbol{y})^{\top} (\widehat{\boldsymbol{y}} - \boldsymbol{y}) \rightarrow \text{Minimize}$$

Issue of DNN-based Speech Synthesis: Over-smoothing of Generated Speech Parameters



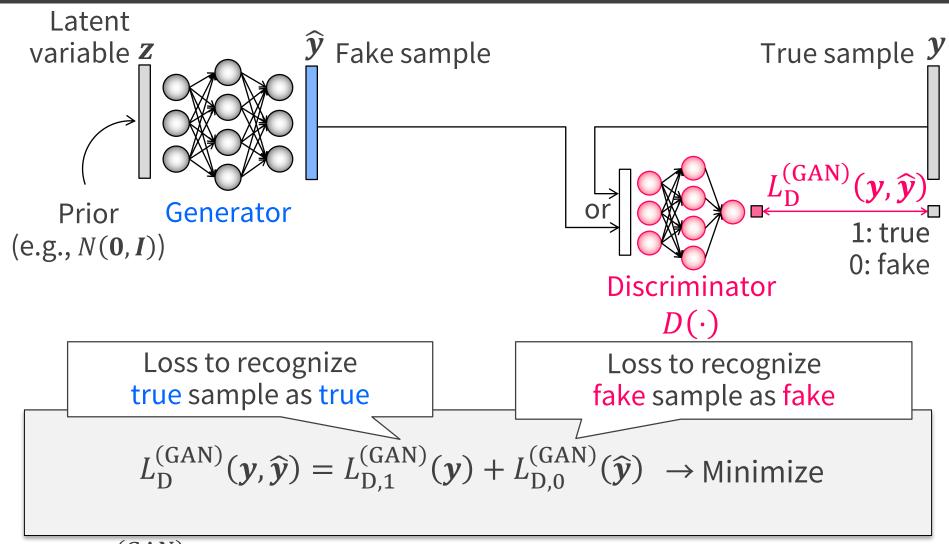
21st mel-cepstral coefficient

These distributions are significantly different... (GV [Toda et al., 2007] explicitly compensates the 2nd moment.)

Table of Contents

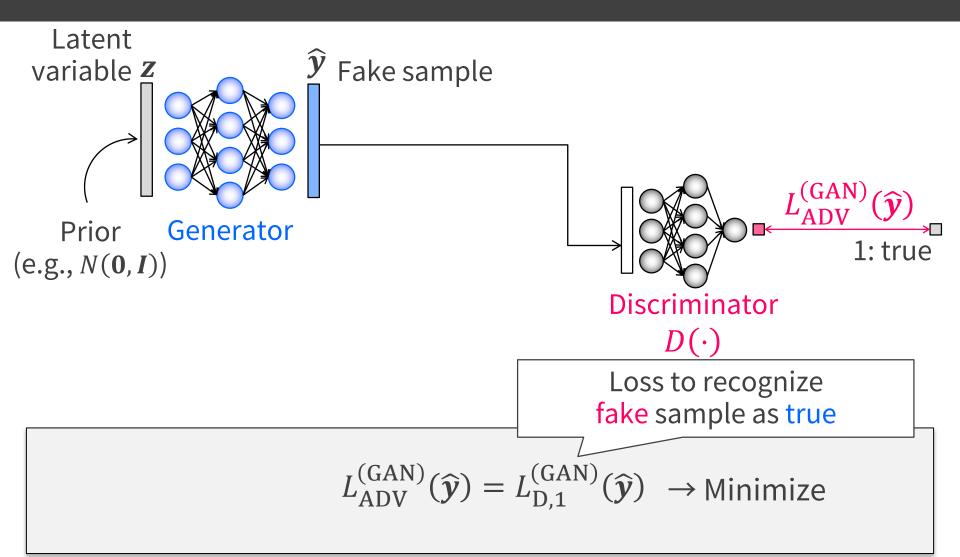
Chapter 1. Introduction Chapter 2. Speech Synthesis Using DNNs Chapter 3. Speech Synthesis Using GANs w/ Vocoders Chapter 4. Speech Synthesis Using GANs w/o Vocoders Chapter 5. Conclusion

Generative Adversarial Nets (GANS) [Goodfellow et al., 2014]



 $L_{\rm D}^{\rm (GAN)}(\boldsymbol{y}, \widehat{\boldsymbol{y}})$ is equivalent to the cross-entropy function.

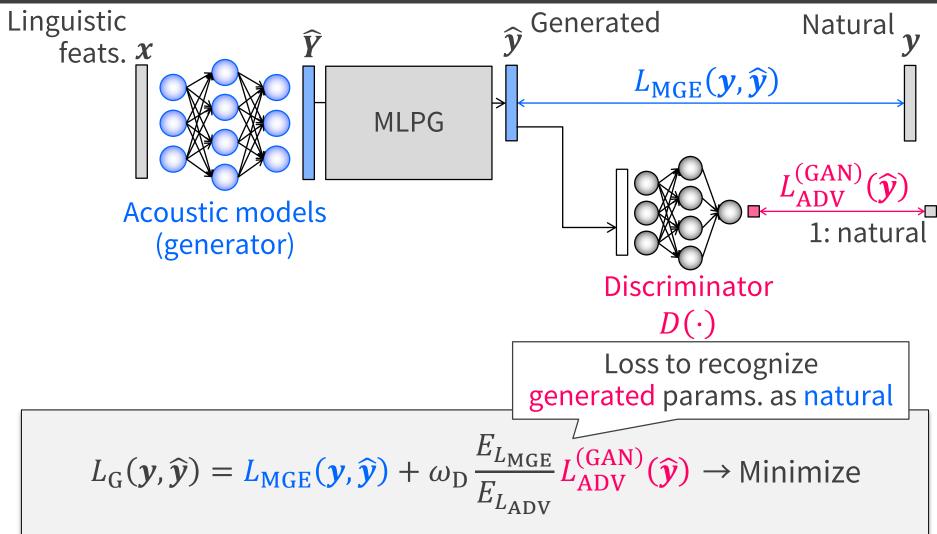
Generative Adversarial Nets (GANS) [Goodfellow et al., 2014]



Minimize approx. JS* divergence betw. dists. of y and \hat{y} .

JS: Jensen-Shannon

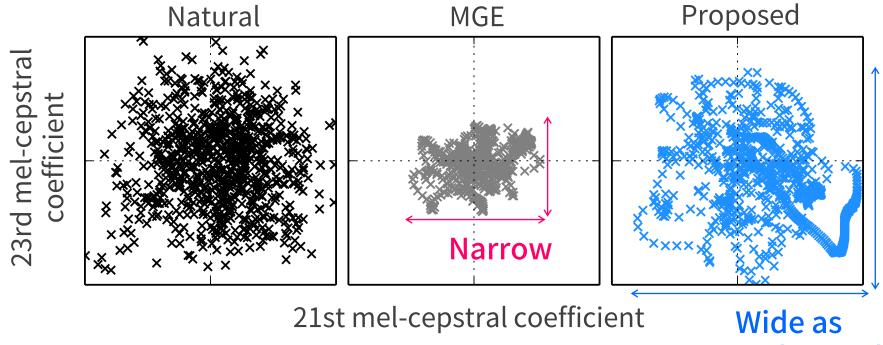
Proposed Method: Acoustic Model Training Using GANs



 $\omega_{\rm D}$: weight, E_{L_*} : expectation values of L_*

Distributions of Speech Parameters

GANs = minimizing divergence betw. two distributions



natural speech

The proposed algorithm alleviates the over-smoothing effect!

Discussions

Compensating for distribution differences

The proposed method generalizes the conventional methods such as the GV.

Integrating voice anti-spoofing techniques

Features that are effective for detecting synthetic speech can be used (Sec. 3.4.8).

Changing a divergence to be minimized

Earth mover's distance (Wasserstein GAN [Arjovsky et al., 2017]) was the best for improving synthetic speech quality (Sec. 3.4.10).

Applying various speech synthesis

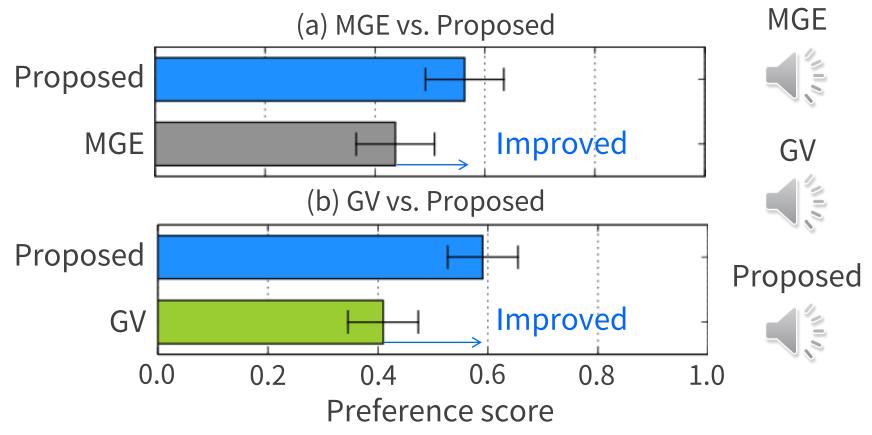
Not only TTS (next slides), but also VC (Sec. 3.5).

Experimental Conditions

Train / evaluate data	450 sentences / 53 sentences (16 kHz sampling)
Linguistic feats.	442-dimensional vector
Speech params.	Mel-cepstral coefficients and prosodic features
Optimizer	AdaGrad [Duchi et al., 2011]
Acoustic models	Feed-Forward 442 – 3x512 (ReLU) – 94 (linear)
Discriminator	Feed-Forward 26 – 3x256 (ReLU) – 1 (sigmoid)
Weight $\omega_{\rm D}$	1.0 (Secs. 3.4.2 and 3.4.4)
Methods	MGE [Wu et al., 2016], GV [Toda et al., 2007], Proposed

Subjective Evaluations in Terms of Speech Quality

Preference AB test (select better sounded speech)



Proposed method improves synthetic speech quality!

Error bars denote 95% confidence intervals.

Table of Contents

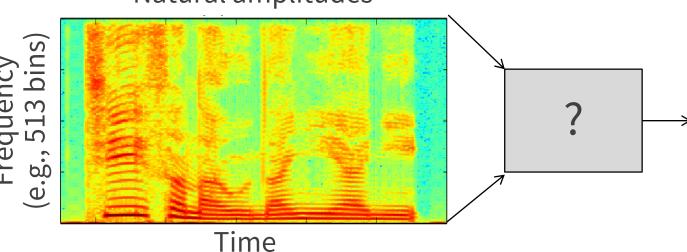
Chapter 1. Introduction Chapter 2. Speech Synthesis Using DNNs Chapter 3. Speech Synthesis Using GANs w/ Vocoders Chapter 4. Speech Synthesis Using GANs w/o Vocoders Chapter 5. Conclusion

Issue in Speech Synthesis w/o Vocoders

Over-smoothing of generated STFT amplitude spectra

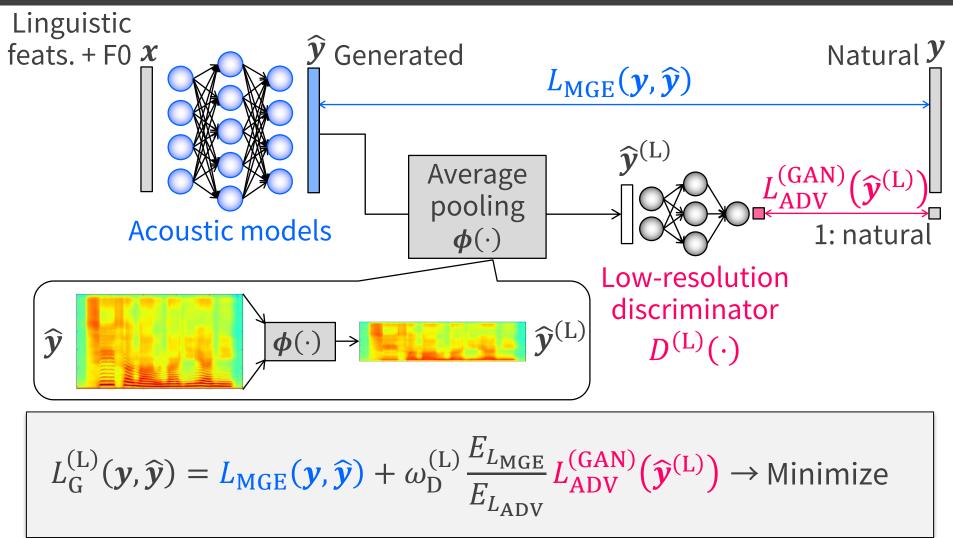
Formants (spectral peaks) tend to be weakened. The method proposed in Chap. 3 cannot be applied directly. Difficulties in modeling highly complex distribution To deal with the issue...

Dimensionality reduction retaining spectral structures

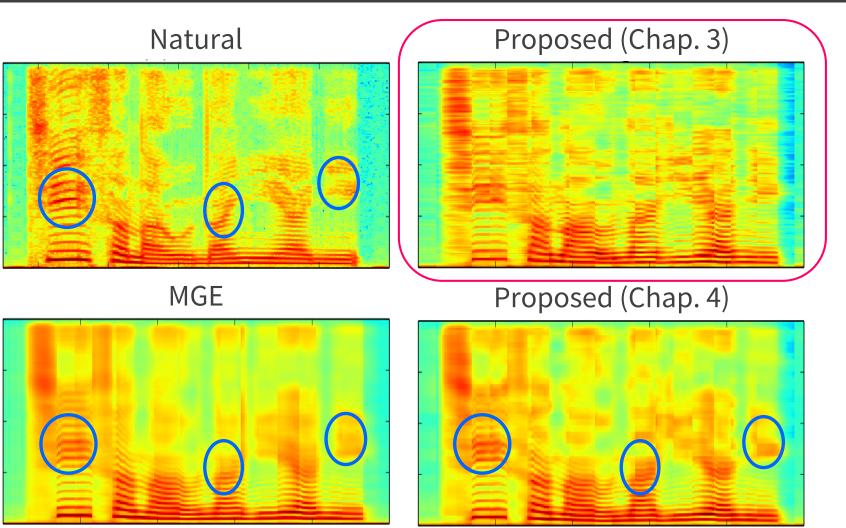


Natural amplitudes

Acoustic Model Training Using Low-resolution GANs



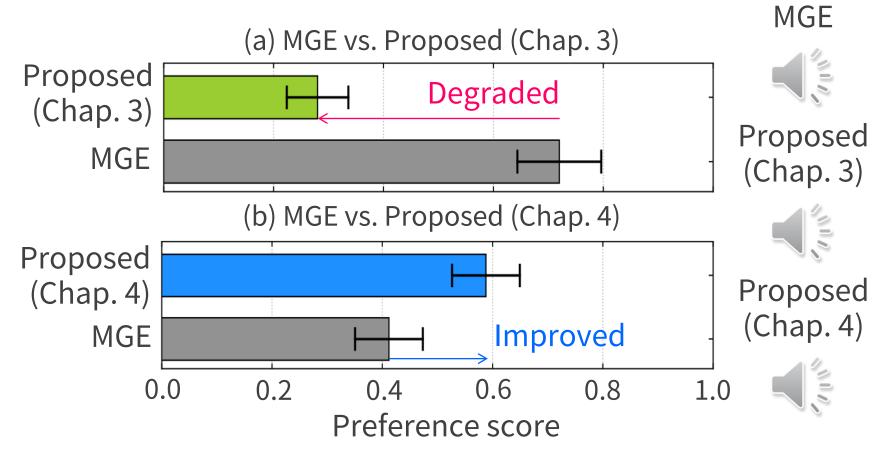
Examples of Natural and Generated Amplitude Spectra



Low-resolution GANs capture differences in formants!

Subjective Evaluations in Terms of Speech Quality

Preference AB test (select better sounded speech)



Low-resolution GAN improves synthetic speech quality!

Error bars denote 95% confidence intervals.

Table of Contents

Chapter 1. Introduction Chapter 2. Speech Synthesis Using DNNs Chapter 3. Speech Synthesis Using GANs w/ Vocoders Chapter 4. Speech Synthesis Using GANs w/o Vocoders Chapter 5. Conclusion

Conclusion

Purpose: improving synthetic speech quality of SPSS Proposed: acoustic model training algorithms using GANs They compensate for the distribution differences betw. natural / generated speech parameters. Results

The proposed algorithms improved synthetic speech quality compared to conventional methods.

Future works

Investigating anti-spoofing techniques

Further improving speech quality using STFT spectra