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 Speech Synthesis

– Technique for synthesizing speech using computer

 Applications

– Speech communication assistance (e.g., speech translation)

– Entertainments (e.g., singing voice conversion)

 DNN-based speech synthesis* [Zen et al. 2013]

– High flexibility but low speech quality

1

Research Field: Speech Synthesis

Text-To-Speech (TTS)

Text Speech

Voice Conversion (VC)

Output
speech

Input
speech

Hello Hello
[Sagisaka et al., 1988]

[Stylianou et al., 1988]

DNN: Deep Neural Network
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Thesis Overview

Smoothness of speech parameters
Overly smoothed Naturally smoothed
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Global Variance (GV) 
[Toda et al., 2007]

Chapter 4
(proposed)

Generative 
Adversarial Nets 

(GANs)
Chapter 3

(proposed)DNNs w/ 
vocoders

[Zen et al., 2013]

DNNs w/o 
vocoders

[Takaki et al., 2017]

STFT: Short-Term Fourier Transform
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Speech Analysis and Parameter Extraction

Speech 
signal

STFT amplitude 
spectra

(e.g., 513 dim.)

Vocoder-derived 
speech params.

(e.g., 32 dim.)

Speech synthesis 
w/ vocoders

(Sec. 2.2)

STFT 
analysis

Mel-cepstral 
coefficients
(timbre)

Prosodic feats.
(pitch, hoarseness)

Speech synthesis 
w/o vocoders

(Sec. 2.3)

Vocoder-based 
parameterization

[Kawahara et al., 1999]
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DNN-based Speech Synthesis w/ Vocoders
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DNN-based Speech Synthesis w/o Vocoders
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Minimum Generation Error (MGE) Training Algorithm

7

𝐿MGE 𝒚,  𝒚

[Wu et al., 2016]

Natural
speech

params.

𝐿MGE 𝒚,  𝒚 =
1

𝑇
 𝒚 − 𝒚 ⊤  𝒚 − 𝒚 → Minimize

𝒚

Generated
speech 
params. 𝒚

Acoustic models

𝒙  𝒀

MLPG*

Linguistic
feats.

MLPG: Maximum Likelihood Parameter Generation [Tokuda et al., 2000]
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Issue of DNN-based Speech Synthesis:
Over-smoothing of Generated Speech Parameters

Natural MGE

21st mel-cepstral coefficient
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These distributions are significantly different...
(GV [Toda et al., 2007] explicitly compensates the 2nd moment.)

Narrow
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Generative Adversarial Nets (GANs) [Goodfellow et al., 2014]

10

1: true
0: fake

True sample

→ Minimize𝐿D
GAN

𝒚,  𝒚 = 𝐿D,1
GAN

𝒚 + 𝐿D,0
GAN  𝒚

Loss to recognize
true sample as true

Loss to recognize
fake sample as fake

Discriminator

𝐷 ⋅

Prior
(e.g., 𝑁 𝟎, 𝑰 )

𝐿D
GAN

𝒚,  𝒚

1: true

Fake sample

Generator

 𝒚𝒛
Latent 

variable 𝒚

or

𝐿D
GAN

𝒚,  𝒚 is equivalent to the cross-entropy function.



/2311

Discriminator

𝐷 ⋅

Minimize approx. JS* divergence betw. dists. of 𝒚 and  𝒚.

𝐿ADV
GAN  𝒚

1: true

→ Minimize𝐿ADV
GAN  𝒚 = 𝐿D,1

GAN  𝒚

Loss to recognize
fake sample as true

Generative Adversarial Nets (GANs) [Goodfellow et al., 2014]

Generator

 𝒚𝒛
Latent 

variable Fake sample

Prior
(e.g., 𝑁 𝟎, 𝑰 )

JS: Jensen-Shannon
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Proposed Method:
Acoustic Model Training Using GANs

12

𝜔D: weight, 𝐸𝐿∗ : expectation values of 𝐿∗

𝐿G 𝒚,  𝒚 = 𝐿MGE 𝒚,  𝒚 + 𝜔D

𝐸𝐿MGE

𝐸𝐿ADV
𝐿ADV
GAN  𝒚 → Minimize

Discriminator

𝐷 ⋅

1: natural

𝐿ADV
GAN  𝒚

Loss to recognize
generated params. as natural

𝐿MGE 𝒚,  𝒚

Natural
𝒚

Generated
 𝒚𝒙  𝒀

MLPG

Linguistic
feats.

Acoustic models
(generator)
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Distributions of Speech Parameters 

The proposed algorithm alleviates the over-smoothing effect!
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Wide as
natural speech

 GANs = minimizing divergence betw. two distributions
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Discussions

 Compensating for distribution differences

– The proposed method generalizes the conventional 
methods such as the GV.

 Integrating voice anti-spoofing techniques

– Features that are effective for detecting synthetic speech 
can be used (Sec. 3.4.8).

 Changing a divergence to be minimized

– Earth mover’s distance (Wasserstein GAN [Arjovsky et al., 2017]) 
was the best for improving synthetic speech quality (Sec. 
3.4.10).

 Applying various speech synthesis

– Not only TTS (next slides), but also VC (Sec. 3.5).
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Experimental Conditions

15

Train / evaluate data 450 sentences / 53 sentences (16 kHz sampling)

Linguistic feats. 442-dimensional vector 

Speech params. Mel-cepstral coefficients and prosodic features

Optimizer AdaGrad [Duchi et al., 2011]

Acoustic models Feed-Forward 442 – 3x512 (ReLU) – 94 (linear)

Discriminator Feed-Forward 26 – 3x256 (ReLU) – 1 (sigmoid)

Weight 𝜔D 1.0 (Secs. 3.4.2 and 3.4.4)

Methods MGE [Wu et al., 2016], GV [Toda et al., 2007], Proposed
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Subjective Evaluations
in Terms of Speech Quality

 Preference AB test (select better sounded speech)

Proposed

Error bars denote 95% confidence intervals.

MGE

0.0 0.2 0.4

 Preference score

0.6 0.8 1.0

Proposed

GV

(a) MGE vs. Proposed

(b) GV vs. Proposed

Improved

Improved

Proposed method improves synthetic speech quality!

MGE

GV

Proposed
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Issue in Speech Synthesis w/o Vocoders

 Over-smoothing of generated STFT amplitude spectra

– Formants (spectral peaks) tend to be weakened.

– The method proposed in Chap. 3 cannot be applied directly.

• Difficulties in modeling highly complex distribution

 To deal with the issue...

– Dimensionality reduction retaining spectral structures
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Acoustic Model Training Using
Low-resolution GANs

𝐿G
L

𝒚,  𝒚 = 𝐿MGE 𝒚,  𝒚 + 𝜔D
L 𝐸𝐿MGE

𝐸𝐿ADV
𝐿ADV
GAN  𝒚 L → Minimize

Low-resolution
discriminator

𝐷 L ⋅

1: natural

𝐿ADV
GAN  𝒚 L

𝐿MGE 𝒚,  𝒚
Natural 𝒚Generated 𝒚

Acoustic models

𝒙
Linguistic
feats. + F0

Average 
pooling
𝝓 ⋅

𝝓 ⋅ 𝒚  𝒚 L

 𝒚 L
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Examples of
Natural and Generated Amplitude Spectra

Natural

MGE

Proposed (Chap. 3)

Proposed (Chap. 4)

Low-resolution GANs capture differences in formants!
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Subjective Evaluations
in Terms of Speech Quality

Low-resolution GAN improves synthetic speech quality!

 Preference AB test (select better sounded speech)

Proposed
(Chap. 3)

MGE

0.0 0.2 0.4

 Preference score

0.6 0.8 1.0

Proposed
(Chap. 4)

MGE

(a) MGE vs. Proposed (Chap. 3)

(b) MGE vs. Proposed (Chap. 4)

Improved

MGE

Proposed
(Chap. 3)

Proposed
(Chap. 4)

Degraded

Error bars denote 95% confidence intervals.
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Conclusion

 Purpose: improving synthetic speech quality of SPSS

 Proposed: acoustic model training algorithms using GANs

• They compensate for the distribution differences betw. 
natural / generated speech parameters.

 Results

– The proposed algorithms improved synthetic speech quality 
compared to conventional methods.

 Future works

– Investigating anti-spoofing techniques

– Further improving speech quality using STFT spectra
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