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Research Field: Speech Synthesis

Speech Synthesis
Technique for synthesizing speech using computer

—| — Text-To-Speech (TTS) |— Wm
Text [Sagisaka et al., 1988] m

';? 4 4 — Voice Conversion (VC)

- Input [Stylianou et al., 1988]
speech

Applications
Speech communication assistance (e.g., speech translation)
Entertainments (e.g., singing voice conversion)

DNN-based speech synthesis™ [zen et al. 2013]
High flexibility but low speech quality

DNN: Deep Neural Network 1/23




Thesis Overview
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Smoothness of speech parameters

STFT: Short-Term Fourier Transform
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Speech Analysis and Parameter Extraction
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signal spectra speech params.
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DNN-based Speech Synthesis w/ Vocoders

[Zen et al., 2013]
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DNN-based Speech Synthesis w/o Vocoders

[Takaki et al., 2017]
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Minimum Generation Error (MGE) Training Algorithm

[Wu et al., 2016]
Generated Natural
Linguistic speech speech
feats. —~ PN . .
eats y P params params y
1 Lvce(3,9)
MLPG*

Acoustic models

. 1 . .
Lvge(y,y) =;(y—y)T(y—y) — Minimize

MLPG: Maximum Likelihood Parameter Generation [Tokuda et al., 2000]



Issue of DNN-based Speech Synthesis:

Over-smoothing of Generated Speech Parameters

Natural MGE

23rd mel-cepstral
coefficient

Narrow

21st mel-cepstral coefficient

These distributions are significantly different...
(GV [Toda et al., 2007] explicitly compensates the 2nd moment.)
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Generative Adversarial Nets (GANS) [coodfellow et al., 2014]

Latent

variable Z ? Fake sample True sample Y
K- - \ Ly (,9);

Prior  Generator or} gD e

(e°g°’ N(O' I)) . .. 0: fake

Discriminator
D()
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true sample as true fake sample as fake

— <~
L8V (y,5) = 1N () + 1EAN () S Minimize

L%GAN) (y,9) is equivalent to the cross-entropy function.
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Generative Adversarial Nets (GANS) [coodfellow et al., 2014]

Latent =N
variable Z Y Fake sample
s -
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Prior  Generator O » 0
(e.g., N(0,I)) - true
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fake sample as true
ey P
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S’ = L5V (3) - Minimize

Minimize approx. JS* divergence betw. dists. of y and y.
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JS: Jensen-Shannon




Proposed Method:

Acoustic Model Training Using GANs

Linguistic 5 Generated Natural
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(generator) 1: natural
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Lapv

wp: weight, E; : expectation values of L,




Distributions of Speech Parameters

GANs = minimizing divergence betw. two distributions

Natural MGE Proposed

23rd mel-cepstral
coefficient

Narrow

21st mel-cepstral coefficient Wide as
natural speech

The proposed algorithm alleviates the over-smoothing effect!

13/23



Discussions

Compensating for distribution differences

The proposed method generalizes the conventional
methods such as the GV.

Integrating voice anti-spoofing techniques

Features that are effective for detecting synthetic speech
can be used (Sec. 3.4.8).

Changing a divergence to be minimized

Earth mover’s distance (Wasserstein GAN [Arjovsky et al., 2017])
was the best for improving synthetic speech quality (Sec.
3.4.10).

Applying various speech synthesis
Not only TTS (next slides), but also VC (Sec. 3.5).
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Experimental Conditions

Train / evaluate data | 450 sentences /53 sentences (16 kHz sampling)
Linguistic feats. 442-dimensional vector
Speech params. Mel-cepstral coefficients and prosodic features
Optimizer AdaGrad [Duchi et al., 2011]
Acoustic models Feed-Forward 442 - 3x512 (ReLU) - 94 (linear)
Discriminator Feed-Forward 26 - 3x256 (ReLU) - 1 (sigmoid)
Weight wp 1.0 (Secs. 3.4.2 and 3.4.4)
Methods MGE [Wu et al., 2016], GV [Toda et al., 2007], Proposed
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Subjective Evaluations

in Terms of Speech Quality

Preference AB test (select better sounded speech)

(a) MGE vs. Proposed MGE

Proposed

Improvéed : GV

(b) GV vs. Proposed

roposed ; : é é Proposed

GV —— Im provéd

1

0.0 0.2 0.4 0.6 0.8 1.0
Preference score

Proposed method improves synthetic speech quality!

MGE

‘ \ ~

Error bars denote 95% confidence intervals.
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Issue in Speech Synthesis w/o Vocoders

Over-smoothing of generated STFT amplitude spectra
Formants (spectral peaks) tend to be weakened.

The method proposed in Chap. 3 cannot be applied directly.
Difficulties in modeling highly complex distribution

To deal with the issue...
Dimensionality reduction retaining spectral structures

Natural amplitudes

Frequency
(e.g., 513 bins)




Acoustic Model Training Using

Low-resolution GANs
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Examples of
Natural and Generated Amplitude Spectra

MGE Proposed (Chap. 4)
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Low-resolution GANs capture differences in formants!
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Subjective Evaluations

in Terms of Speech Quality

Preference AB test (select better sounded speech)

(a) MGE vs. Proposed (Chap. 3)
Proposed ' ' ' '

(Chap. 3) -
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(b) MGE vs. Proposed (Chap. 4)
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(Chap. 4)
MGE Improved
0.0 0.2 0.4 0.6 0.8

Preference score

1.0

MGE

N\

Proposed
(Chap. 3)

‘\‘-

| Proposed

(Chap. 4)

‘\‘

Low-resolution GAN improves synthetic speech quality!

Error bars denote 95% confidence intervals.
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Conclusion

Purpose: improving synthetic speech quality of SPSS

Proposed: acoustic model training algorithms using GANs

They compensate for the distribution differences betw.
natural / generated speech parameters.

Results

The proposed algorithms improved synthetic speech quality
compared to conventional methods.

Future works
Investigating anti-spoofing techniques
Further improving speech quality using STFT spectra
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