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Abstract

Speech synthesis is a technique for artificially synthesizing natural human speech. Text-

to-speech (TTS) is a technique for synthesizing speech from text, and voice conversion

(VC) is a technique for synthesizing speech from another one while preserving the linguis-

tic information of the original speech. With these speech synthesis techniques, a method

that not only synthesizes natural-sounding speech but also easily controls the character-

istics of the synthetic speech is required. Statistical parametric speech synthesis (SPSS),

which is covered in this thesis, is a method for constructing acoustic models represent-

ing the relationship between the input features (i.e., linguistic features of text in TTS

and source speech parameters in VC) and the speech parameters. Although this method

has the flexibility needed to control the characteristics of synthetic speech, the quality of

the synthetic speech is low compared with that of natural speech. This is primarily due

to the over-smoothing effect often observed in generated speech parameters. This effect

can be alleviated by compensating for the differences between the natural and synthetic

speech such as the global variance (i.e., the second moment of a distribution) and the

modulation spectrum of the speech parameter sequences. However, quality degradation

is still a critical problem. For further improvement of speech quality in SPSS, this thesis

presents a novel algorithm for training acoustic models for SPSS using generative adver-

sarial networks (GANs). GANs consist of two deep neural networks (DNNs): one works

as a discriminator to distinguish natural and generated samples and the other works as

a generator to deceive the discriminator. This thesis defines a new training criterion

for acoustic models based on this framework. The criterion is the weighted sum of the

conventional minimum generation error loss of the speech parameters and the adversar-

ial loss to make the discriminator recognize the generated speech parameters as natural.

Since the objective of the GANs is to minimize the divergence (i.e., the distribution dif-

ference) between the natural and generated samples, the proposed algorithm effectively

alleviates the effect of over-smoothing. The proposed algorithm can be regarded as a

generalization of the conventional method using explicit modeling of analytically derived

features such as the global variance and modulation spectrum because it effectively mini-

mizes the divergence without explicit statistical modeling. The discriminator used in the

proposed algorithm can be interpreted as anti-spoofing, i.e., as a technique for detecting

synthetic speech and preventing voice spoofing attacks. Accordingly, techniques and ideas

concerning anti-spoofing can be applied to the proposed training algorithm. This thesis

investigates the effectiveness of the proposed algorithm in two domains: 1) DNN-based

SPSS using vocoder-derived speech parameters and 2) that using short-term Fourier trans-

form spectra, which is becoming one of the mainstreams of SPSS research. Experimental

results demonstrate that the proposed algorithm improves synthetic speech quality.
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概要
音声合成とは，コンピュータを用いて音声を人工的に生成する技術である．特に，テキスト

から音声を生成する技術をテキスト音声合成といい，入力された音声の言語情報を保持しつ

つ，非言語情報を変換する技術を音声変換という．これらの音声合成技術には，高品質な合成

音声を生成でき，かつ，生成される合成音声の声質を容易に制御できる手法が求められる．本

論文で対象とする統計的パラメトリック音声合成は，入力特徴量と音声パラメータの統計的な

対応付けを表現する音響モデルを学習させる手法である．この手法では，合成音声の声質制御

が容易だが，統計処理に起因する合成音声パラメータの過剰な平滑化により，合成音声の音質

が人間の自然音声と比較して著しく劣化するという問題がある．過剰な平滑化を定量化する指

標として，これまでに，合成音声パラメータの系列内変動（分布の 2次モーメント）や，変調

スペクトルなどの解析的特徴量が提案されており，これらを補償することによる合成音声の音

質改善が確認されているが，合成音声の音質は未だに低い．本論文では，統計的パラメトリッ

ク音声合成のさらなる音質改善を目的として，画像生成の分野において有効な手法として知ら

れている敵対的学習の枠組みを用いた音響モデル学習法を新たに提案する．敵対的学習は，識

別モデルと生成モデルの 2つの deep neural networks を学習させる手法である．識別モデル

は，真のデータと生成モデルにより生成されたデータを識別するように学習される．一方で，

生成モデルは，識別モデルを詐称するデータを生成するように学習される．提案手法における

音響モデル学習時の学習基準は，従来の音声パラメータの生成誤差と，敵対的学習に由来す

る，識別モデルを詐称する損失の重み付き和として表現される．提案手法では，自然音声パ

ラメータと合成音声パラメータの分布間距離最小化を考慮して音響モデルを学習させるため，

過剰な平滑化を緩和できる．これは，従来の解析的特徴量を明示的に補償する手法の拡張と

解釈でき，合成音声のさらなる音質改善が期待できる．また，提案手法において導入される

識別モデルは，合成音声による声のなりすましを防ぐ anti-spoofing として解釈できるため，

anti-spoofing の知見を取り入れた音声合成も実現できる．本論文では，提案手法の有効性を

(1) ボコーダパラメータを用いた統計的パラメトリック音声合成，及び (2) 近年の主流となる

ことが予想される音声合成方式の 1つである，短時間フーリエ変換スペクトルを用いた統計的

パラメトリック音声合成において調査し，実験的評価によりその有効性を示す．
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Chapter 1

Introduction

1.1 Background

Although people can communicate with each other in several ways, the most natural way

is speaking. The ideas in their minds are conveyed by speech waveforms, which include not

only linguistic information but also para-/non-linguistic information such as the speaker’s

emotions and attitude. Speech synthesis is a technology for mimicking speech behavior

by using computers and therefore extending speech communication.

This thesis covers two techniques of speech synthesis; text-to-speech (TTS) [2] and voice

conversion (VC) [3], which are illustrated in Fig. 1.1. TTS is a technique for synthesizing

speech from a given text, which is typically applied to speech interface for computers

and smartphones (i.e., man-machine interface). VC is a technique for synthesizing speech

from another one while preserving the linguistic information of the original speech, which

can be used to overcome the limitation in the human speech production systems. These

techniques can not only assist natural speech communication (e.g., speech translation

systems to remove language differences [4, 5]) but also offer us some entertainments such

as singing voice conversion systems [6, 7]. Figure 1.2 shows some applications of the

speech synthesis techniques. With these techniques, a method that not only synthesizes

natural-sounding speech but also enables the characteristics of synthetic speech to be

easily controlled is required.

Statistical parametric speech synthesis (SPSS) [8], the topic of this thesis, is a method

for learning a statistical mapping from input (i.e., text in TTS and source speech in VC)

to output speech. In SPSS, several steps are taken to synthesize the desired speech. First,

the input features (i.e., the linguistic features of the text in TTS and source speech pa-

rameters in VC) and the output speech parameters are extracted from a training dataset.

Then, acoustic models representing the relationship between the input features and out-

put speech parameters are constructed. Deep neural networks (DNNs) have recently come

to be used as acoustic models [9] because they can model the relationships between the

input features and speech parameters more accurately than conventional hidden Markov

models (HMMs) [10] and Gaussian mixture models (GMMs) [11]. Finally, a synthetic
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Text-to-speech

(TTS)
�����

����

Voice conversion

(VC)
������	


�����

�����


�����

������	


�����

Fig. 1.1: Two speech synthesis techniques covered in this thesis. The difference between

TTS and VC is the information input to the speech synthesis systems.

TTS / VC

Speech communication
assistance

Entertainment
applications

Speech translation Man-machine

interface

Singing voice

conversion

Fig. 1.2: Applications of speech synthesis techniques.

speech waveform is synthesized from speech parameters predicted by the acoustic models.

The acoustic modeling techniques used in SPSS for generating high-quality speech param-

eters have been widely studied since they can be used for both TTS and VC. Although

SPSS supports flexible control characteristics of the synthetic speech, speech quality is

degraded.

A primary cause of the quality degradation is over-smoothing [8, 12] of the generated

speech parameters, which removes fine structures of the natural speech parameters and

makes the synthetic speech sound muffled. One way to alleviate this effect is to reduce the

differences between the natural and generated speech parameters. This can be done by, for

example, modeling the probability distributions in a parametric [11] or non-parametric [13]

way in the acoustic model training and then generating or transforming the synthetic

speech parameters by using the distributions. A effective approach is to use analytically

derived features correlated to the quality degradation. Global variance (GV) [11] and

modulation spectrum (MS) [14] are well-known derived features for reproducing natural

statistics. These features work as a constraint in the training stage [15, 16]. Nose and

Ito [17] and Takamichi et al. [15] proposed methods for reducing the differences between
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natural and generated GV and MS Gaussian distributions. However, quality degradation

is still a critical problem.

Not only the over-smoothing effect but also speech parameter extraction and speech

waveform synthesis affect synthetic speech quality. High-quality vocoder systems have

played an important role in both parameter extraction and waveform synthesis. In con-

ventional SPSS using vocoder systems, vocoder-derived speech parameters representing

the characteristics of a vocal cord and vocal tract are extracted from a speech waveform.

The characteristics of synthetic speech can be easily controlled by using the derived speech

parameters. However, the quality degradation due to vocoder-based parameterization in

state-of-the-art DNN-based speech synthesis has also become a critical problem. For ex-

ample, a vocoder process to synthesize a speech waveform causes buzziness in synthetic

speech and degrades quality considerably. The most straighforward approach to avoid the

vocoder-based parameterization is to generate low-level features such as short-term Fourier

transform (STFT) spectra [18] and speech waveforms [19, 20] before vocoder-based pa-

rameterization. Such vocoder-free SPSS can achieve higher quality in the synthetic speech

than the conventional SPSS using vocoders. However, in addition to the over-smoothing

effect, difficulty in acoustic model training due to the high dimensionality of the spectral

amplitudes causes a significant quality degradation problem.

1.2 Thesis Scope

This thesis presents novel algorithms for overcoming the quality degradation caused by

the over-smoothing of the generated speech parameters. They use generative adversarial

networks (GANs) to train acoustic models for SPSS. GANs consist of two DNNs: a dis-

criminator to distinguish natural and generated samples and a generator to deceive the

discriminator. A new training criterion is defined for acoustic models that is based on

this framework; the criterion is the weighted sum of the conventional minimum generation

error (MGE) loss of the speech parameters and the adversarial loss, which makes the dis-

criminator recognize the generated speech parameters as natural. Since the objective of

GANs is to minimize the divergence (i.e., the distribution difference) between natural and

generated speech parameters, the proposed algorithm effectively alleviates the effect of the

over-smoothing. It can be regarded as a generalization of the conventional method using

explicit modeling of analytically derived features such as GV and MS because it effectively

minimizes the divergence without explicit statistical modeling. The discriminator used in

the proposed algorithm can be interpreted as anti-spoofing, i.e., as a technique for detect-

ing synthetic speech and preventing voice spoofing attacks. Accordingly, techniques and

ideas concerning anti-spoofing can be applied to the training algorithm. This thesis first

evaluates the effectiveness of the proposed algorithm in DNN-based SPSS using vocoder-

derived speech parameters. The evaluations also investigate the effect of the divergence of

various types of GANs, including image-processing-related and speech-processing-related

GANs.
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This thesis also extends the proposed algorithm to DNN-based SPSS using STFT spec-

tra. To overcome the difficulty in training acoustic models because of the complex distri-

bution of STFT spectral amplitudes, a training algorithm using low-resolution GANs is

proposed. Through a pooling layer along with a frequency axis, spectral amplitudes are

converted into low-resolution spectra. The training criterion for the acoustic models is

the weighted sum of the mean squared error (MSE) between the natural and generated

spectral amplitudes in the original frequency resolution and the adversarial loss using a

discriminator for the low-frequency-resolution GANs. GANs with low resolution can be

regarded as one compensating for the difference between the spectral envelopes of the

natural and synthetic speech because the low-resolution spectra approximately emulate

filter banks. Since the spectral envelopes are dominant features in the quality of syn-

thetic speech and the evaluation using the vocoder-derived speech parameters revealed

that the GANs are particularly effective for generating spectral parameters, using GANs

with low resolution should improve the speech quality better than using GANs with the

original resolution. The algorithm using low-resolution GANs can be extended to one

using low-resolution GANs and original-resolution GANs, which is expected to compen-

sate for not only the differences in spectral envelopes but also fine structures (i.e., the

excitation parameters) of the natural and generated STFT spectral amplitudes.

1.3 Thesis Overview

This thesis is organized as follows. Chapter 2 briefly reviews the framework of con-

ventional DNN-based SPSS. Chapter 3 introduces GANs and presents an algorithm for

acoustic model training of SPSS using GANs. Experimental results for the proposed algo-

rithm using vocoder-derived speech parameters are also presented. Chapter 4 extends the

algorithm to vocoder-free SPSS using STFT spectra and demonstrates its effectiveness.

Chapter 5 summarizes the key points and mentions future work. Figure 1.3 depicts the

outline of the proposed methods in the SPSS techniques.
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Chapter 2

Statistical Parametric Speech Synthesis

Using Deep Neural Networks

2.1 Introduction

SPSS consists of several steps for synthesizing a speech waveform from input information.

Figure 2.1 shows the basic framework of SPSS using DNNs. First, the input features

(i.e., linguistic information of the given text in TTS and speech parameters of the source

speech in VC) and output speech parameters are extracted in the feature analysis. Next,

acoustic models representing the relationships between the input features and output

speech parameters are trained. In this thesis, DNNs are used as the acoustic models.

Then, speech parameters are generated from the input features by using the trained

acoustic models. Finally, a speech waveform is synthesized using the generated speech

parameters.

This chapter is organized as follows. Section 2.2 describes SPSS processing using

vocoder systems. Section 2.3 presents techniques for vocoder-free SPSS using STFT spec-

tra. Section 2.4 summarizes this chapter.

2.2 DNN-based Statistical Parametric Speech Synthesis Using

Vocoders

2.2.1 Feature Analysis

Speech Analysis

To facilitate control of the characteristics of the synthetic speech, parameters representing

the vocal tract and vocal cord features are extracted from the speech waveform. On

the basis of a source-filter model, a speech signal is represented as convolutions of two

components: spectral parameters representing the vocal tract features and excitation

parameters representing the vocal cord features. These parameters are extracted from
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Fig. 2.1: Flowcharts for SPSS using DNNs. DNN-based acoustic models are constructed

to represent the input features and output speech parameters.

the STFT power spectra of the speech signal. The excitation parameters are further

decomposed into periodic factors typically represented as the fundamental frequency (F0)

and aperiodic factors [21]. Figure 2.2 shows an example of STFT spectra and its spectral

envelope of a speech signal.

As the dimensionality of the spectral parameters tends to be high, a dimensionality

reduction technique is applied before acoustic modeling. A commonly used technique

uses mel-cepstral coefficients [22], which take the perceptual effects of human listening in

lower frequency components into account for the dimensionality reduction.

In modeling F0, the difference in value between the voiced regions (V) and unvoiced

regions (U) must be considered. Continuous F0 modeling [23] was proposed to efficiently

represent the F0 parameters. It uses one-dimensional continuous values to represent the

observed log F0 and one-dimensional discrete values to represent U/V (0 for U and 1

for V). The values of log F0 observed in unvoiced regions are estimated using SPLINE

interpolation. Figure 2.3 shows an example of a continuous F0 sequence and U/V labels.

In this thesis, the STRAIGHT vocoder [24] is used to extract the speech parameters.

Although such vocoders have high quality, deployment of speech synthesis systems using

the STRAIGHT vocoder is limited due to its patent protection. Recently, the freely

available WORLD vocoder [25, 26] was proposed and gets used widely instead of the

STRAIGHT vocoder.
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Text Analysis

In TTS, linguistic features are extracted from the input text. This thesis focuses on

Japanese TTS systems [27]. Japanese linguistic features consist of phoneme, accent

type, word, part-of-speech, breath group, and sentence length. A text analyzer such as

MeCab [28] is used to extract these features. They are represented as multi-dimensional
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vectors including categorical factors (e.g., phoneme identity and accent type) and numeric

factors (e.g., the total number of phonemes and sentence length). Because Japanese is

a mora-timed language (i.e., mora isochrony), the mora features as well as the phoneme

features are included in the linguistic features.

Temporal Alignment

The lengths of the input features and output speech parameters are aligned for the acoustic

modeling. In TTS, the lengths of the linguistic features are much shorter than those of

the speech parameters. Thus, each linguistic feature is duplicated to align its length

with the corresponding speech parameters. The Viterbi algorithm using hidden Markov

models is used to obtain the phoneme durations. Figure 2.4 shows an example of feature

alignment. In VC, the lengths of the source and target speech parameters are aligned

using the dynamic time warping (DTW) algorithm [11]. Figure 2.5 shows a conceptual

diagram of the DTW algorithm.

2.2.2 Acoustic Model Training

General Purpose

Acoustic models parameterized by θG define the mapping y = G(x; θG) from input

features x to output speech parameters y. x = [x⊤
1 , · · · ,x⊤

t , · · · ,x⊤
T ]

⊤ is an input

feature sequence and y = [y⊤
1 , · · · ,y⊤

t , · · · ,y⊤
T ]

⊤ is an output speech parameter se-

quence, where t and T denote the frame index and total frame length, respectively.

xt = [xt(1), · · · , xt(Dx)]
⊤ and yt = [yt(1), · · · , yt(Dy)]

⊤ are a Dx-dimensional input fea-

ture vector and a Dy-dimensional output speech parameter vector at frame t, respectively.

The goal of acoustic model training is to estimate model parameters θG by using train-

ing dataset {(xn,yn)}Nn=1, which includes N pairs of input features and output speech

parameter.

Static-dynamic Feature Modeling

To take into account temporal continuity, the static-dynamic features of the speech param-

eters are modeled by acoustic models. Let Y t = [y⊤
t ,∆y⊤

t ,∆∆y⊤
t ]

⊤ be a static-dynamic

feature vector at frame t; ∆yt and ∆∆yt are dynamic features calculated using

∆yt =
1

2
yt+1 −

1

2
yt−1, (2.1)

∆∆yt = yt+1 − 2yt + yt−1. (2.2)

A static-dynamic feature sequence Y = [Y ⊤
1 , · · · ,Y

⊤
t , · · · ,Y

⊤
T ]

⊤ is calculated as Y =

My, where M is a 3DyT -by-DyT matrix used to calculate the dynamic features [10].

Figure 2.6 shows the matrix computation used to obtain the static-dynamic feature se-

quence.
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phoneme-wise linguistic features are duplicated to align its length with the corresponding

speech parameters.

Acoustic Modeling in TTS

In TTS, besides constructing acoustic models to generate the speech parameters, dura-

tion models to predict phoneme durations from linguistic features need to be constructed.

After predicting the phoneme durations, the acoustic models for speech parameters pre-

dict the joint vector of mel-cepstral coefficients, continuous log F0, U/N, and aperiodic

components. Figure 2.7 shows the acoustic models representing the relationships between

the linguistic features and speech parameters.

Acoustic Modeling In VC

In VC, acoustic models predict the static-dynamic features of the mel-cepstral coefficients

of the target speech on the basis of those of the source speech. F0 is often linearly converted
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Fig. 2.5: DTW algorithm for feature alignment in VC. The phoneme boundaries of the

input and reference speech are superimposed for clear visualization.

by using the statistics of the F0 sequences of the source and target speech.

Since the domains of the input and output features of the acoustic models are the same

in VC, the models can be constructed to represent the mapping from the input features

to the difference between the two features. In VC using spectral differentials [29], acoustic

models are used to represent y − x = G(x; θG), rather than y = G(x; θG).

DNN Architectures for Acoustic Models

A DNN is an artificial neural network that has more than one hidden layer between its

input layer and output layer [30] that provides a unified framework for acoustic modeling

in both TTS and VC. Although there are many architectures, two commonly used archi-

tectures are used in this thesis: the Feed-Forward DNNs [31, 32] and the long-short term

memory (LSTM) [33, 34].

The Feed-Forward DNN is the foundation of every DNN that transforms an input

vector into an output vector through stacked nonlinear transformations. The layer-wise

nonlinear transformations of the DNN are defined as element-wise activation functions

g(l)(·), l ∈ {1, · · · , L + 1}, where l and L denote the layer index and number of layers in
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the Feed-Forward DNN, respectively. The definition of the activation function plays an

important role in the DNN framework. For the hidden layers (l = 1, · · · , L), the rectified

linear unit (ReLU) function [35], defined as g(l)(z(l)) = max{0, z(l)}, is often used as
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the activation function. For the output layer (l = L + 1), the linear function defined

as g(L+1)(z(L+1)) = z(L+1) is used as the activation function in regression problems,

i.e., TTS and VC. The model parameters of the Feed-Forward DNN, i.e., the weight

matrices and bias vectors of each hidden layer, are updated by supervised learning using

the backpropagation (BP) algorithm [36]. First, an output vector ŷ is predicted from

input vector x through the DNN. Then, a defined loss function L(y, ŷ) is computed with

the target vector y and the predicted vector ŷ. Finally, the model parameters are updated

using the stochastic gradient descent (SGD) algorithm with the gradient ∇θGL(y, ŷ).

The LSTM is one of the most popular recurrent neural network architectures that can

learn sequence modeling. It has a block consisting of a memory cell, input gate, output

gate, and forget gate to learn long-short-term dependencies. The memory cell stores

information about the previous sequence, and the forget gate controls the weights for old

values stored in the memory cell. The input and output gates control the weights for new

values of the memory cell and the output values of the LSTM, respectively. The model

parameters of the LSTM, i.e., weight matrices and bias vectors of the memory cell and

the gates, are updated by supervised learning using the backpropagation through time

(BPTT) algorithm [37]. First, the inner loops of the LSTM are unfolded and then the

algorithm is run to estimate the gradients of the model parameters.

Loss Functions for DNN Training

The standard loss function for training DNN-based acoustic models is the mean squared er-

ror (MSE) between the natural and generated speech parameters. In DNN-based TTS [31],

the acoustic models predict the static-dynamic feature sequence Ŷ . The loss function for

training the models is defined as the MSE between Y and Ŷ :

LMSE

(
Y , Ŷ

)
=

1

T

(
Ŷ − Y

)⊤ (
Ŷ − Y

)
. (2.3)

The MSE is also used for training the duration models. Let d = [d1, · · · , dp, · · · , dP ]⊤

be a natural phoneme duration sequence, and d̂ = [d̂1, · · · , d̂p, · · · , d̂P ]⊤ be a generated

duration sequence, where p is the phoneme index and P is the total number of phonemes.

The duration model parameters are updated to minimize LMSE(d, d̂).

To take the static-dynamic constraint of the speech parameters into account, the mini-

mum generation error (MGE) training was proposed [38, 39]. In MGE training, the loss

function is defined as the MSE between the natural and generated speech parameters after

maximum likelihood parameter generation (MLPG) [1], defined as

LMGE (y, ŷ) =
1

T
(ŷ − y)

⊤
(ŷ − y)

=
1

T

(
RŶ − y

)⊤ (
RŶ − y

)
, (2.4)

where R is a DyT -by-3DyT matrix defined as

R =
(
M⊤Σ−1M

)−1

M⊤Σ−1. (2.5)
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Σ = diag[Σ1, · · · ,Σt, · · · ,ΣT ] is a 3DyT -by-3DyT covariance matrix, where Σt is a 3Dy-

by-3Dy covariance matrix at frame t. Σ is separately estimated using a training dataset.

As described by Wu et al. [39], gradient ∇Ŷ LMGE(y, ŷ) is given as R⊤(ŷ − y)/T .

2.2.3 Speech Parameter Generation

Speech parameters can be generated from the trained acoustic models. In TTS, the

phoneme durations of the given linguistic features are first predicted using trained du-

ration models. The static-dynamic feature sequence of the speech parameters is then

predicted using trained acoustic models. Finally, MLPG is used to obtain the static

features of the speech parameters. In VC, the static-dynamic feature sequence of the

target speech parameters or that of the spectral differentials is predicted using the source

speech parameters, and MLPG is again used to obtain the static features of the speech

parameters.

GV Compensation

Although the generated speech parameters after MLPG are temporally smoothed, the

fine structures of the natural speech parameters tend to vanish due to over-smoothing,

which considerably degrades synthetic speech quality. One way to prevent the fine struc-

tures from vanishing is reproducing the statistics of the natural speech. Global variance

(GV) compensation [40, 41] is a commonly used technique for improving synthetic speech

quality. The GV is defined as the second moment of the speech parameter sequence. A

Dy-dimensional GV vector of y is calculated using

v (y) = [v (1) , · · · , v (d) , · · · , v (Dy)]
⊤
, (2.6)

v (d) =
1

T

T∑
t=1

(yt (d)− ⟨y (d)⟩)2 , (2.7)

⟨y (d)⟩ = 1

T

T∑
t=1

yt (d) . (2.8)

The GV of the generated speech parameter sequence tends to be smaller than that of

the natural speech parameter sequence. The synthetic speech quality can be improved

by compensating for the difference between natural and generated GVs. The generated

speech parameters after the GV compensation are calculated using

ŷ
(GV)
t (d) =

√
µ(GV) (d)

µ̂(GV) (d)
{ŷt (d)− ⟨ŷ (d)⟩}+ ⟨ŷ (d)⟩ , (2.9)

where µ(GV) (d) and µ̂(GV) (d) are the d-th components of the GV mean vectors of the

natural and generated speech, respectively. They are calculated using training data.



Chapter 2 Statistical Parametric Speech Synthesis Using Deep Neural Networks 15

��

�������

�	
	����



���
������

���������


�������
�
	��

�����������


MLSA

filter

Excitation

generation

������


�����

Fig. 2.8: Speech synthesis using MLSA filter. The excitation signal is firstly generated

from F0 and aperiodic components and then the MLSA filter is applied to the signal for

synthesizing the speech waveform.

2.2.4 Speech Waveform Synthesis

Mel-log Spectrum Approximation (MLSA) Filter

The synthetic speech waveform is synthesized from the generated speech parameters, using

a synthesis filter such as the mel-log spectrum approximation (MLSA) filter [42]. Figure

2.8 illustrates the speech synthesis process using the MLSA filter.

Spectral Differentials Filter

The analysis of the excitation parameters often occurs some errors such as the U/V

decision error. In VC using spectral differentials [29], the converted speech waveform is

synthesized by applying a spectral differential filter to the input speech waveform. This

technique can avoid causing the errors and improve the converted speech quality. Figure

2.9 illustrates the VC process using the spectral differentials.

2.3 Vocoder-free Statistical Parametric Speech Synthesis

2.3.1 DNN-based Acoustic Models for SPSS using STFT Spectra

The conventional SPSS using vocoder-derived speech parameters works reasonably well.

However, as mentioned in Section 2.2.4, use of the vocoder-based parameterization cause

buzziness in the synthetic speech. One method for preventing this is vocoder-free SPSS

using STFT spectra [18].

Acoustic models predict the static feature sequence of the STFT spectral amplitudes

from a joint vector of the linguistic features, continuous F0, and U/V. Use of the F0

parameters as the input features is an effective wat to predict the harmonic information
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converted using the estimated spectral differentials filter.

of the spectral amplitudes [18]. Therefore, F0 models need to be constructed that generate

the F0 parameters from the linguistic features apart from the acoustic models for the STFT

spectral amplitudes. The duration models used in the conventional TTS are also used.

The acoustic models are trained to minimize the MSE between the natural and gener-

ated static features of the spectral amplitudes. Although the MGE used in conventional

SPSS can be used in vocoder-free SPSS, the MSE used by Takaki et al. [18] is used here.

2.3.2 Phase Reconstruction from Spectral Amplitudes

The phase information is reconstructed using Griffin and Lim’s algorithm [43] with the

predicted spectral amplitudes. Let y(n) be a speech waveform sample at time index n.

The phase information for the given STFT spectral amplitudes yt(d) is reconstructed in

accordance with Algorithm 2.1. Use of this algorithm enables a speech waveform to be

synthesized without the vocoding process. Figure 2.10 illustrates the speech synthesis

process in SPSS using STFT spectra.

2.4 Summary

This chapter described the basic framework of SPSS using DNNs as the acoustic models.

In SPSS, speech synthesis is performed in several steps, including feature analysis, acoustic

model training, speech parameter generation, and speech waveform synthesis. The DNNs

described in this chapter play an important role in SPSS: they represent the relationships

between the input features and speech parameters. Feed-Forward DNNs and LSTMs are

often used as the DNN architecture, and their model parameters are estimated using the
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Algorithm 2.1 Phase reconstruction from spectral amplitudes

1: set initial phase information ϕt(d) to random values

2: set initial STFT spectra Yt(d) to yt(d) exp(jϕt(d))

3: for number of iterations do

4: generate y(n) from Yt(d) using inverse STFT (ISTFT):

y(n)← ISTFT [Yt(d)] .

5: reconstruct Yt(d) from y(n) using STFT:

Yt(d)← STFT [y(n)] .

6: update Yt(d) with fixed spectral amplitudes yt(d):

Yt(d)← yt(d)
Yt(d)

|Yt(d)|
.

7: end for
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Fig. 2.10: TTS process using STFT spectra. “G & L” indicates “Griffin and Lim.”

BP (or BPTT) algorithm so as to minimize the defined loss function.
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Chapter 3

Statistical Parametric Speech Synthesis

Using Generative Adversarial Networks

3.1 Introduction

Although a variety of methods such as the GV compensation described in Section 2.2.3 is

effective for improving synthetic speech quality, the over-smoothing effect is still a critical

problem in SPSS. To overcome the effect, this chapter proposes a novel algorithm for

training acoustic models. In the proposed algorithm, a framework of generative adversarial

networks (GANs) is incorporated into the acoustic model training. Since the objective

of the GANs is to minimize the distribution difference between natural and generated

samples, the proposed algorithm can reproduce natural statistics of speech parameters.

This chapter is organized as follows. Section 3.2 explains a basic framework of the

GANs. Section 3.3 describes the proposed algorithm for acoustic modeling incorporating

the GANs. Section 3.4 presents experimental evaluations of the proposed algorithm in

DNN-based TTS and VC. Section 3.5 summarizes this chapter.

3.2 Generative Adversarial Networks (GANs)

3.2.1 Objective of GANs

GANs [44] are frameworks for learning deep generative models, which simultaneously train

two DNNs: a generator and discriminator D(y; θD). θD is a set of the model parameters

of the discriminator given as neural networks. The value obtained by taking the sigmoid

function from the discriminator’s output, 1/(1 + exp(−D(y))), represents the posterior

probability that input y is a natural sample. The discriminator is trained to make the

posterior probability 1 for natural samples and 0 for generated samples, while the generator

is trained to deceive the discriminator; that is, it tries to make the discriminator make

the posterior probability 1 for generated samples. In the GAN training, the two DNNs

are iteratively updated by minibatch stochastic gradient descent. Figure 3.1 illustrates a
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Fig. 3.1: GAN framework. The discriminator is trained to distinguish y and ŷ, while the

generator is trained to deceieve it. Here, ŷ is generated from x through the generator.

conceptural diagram of the GAN framework.

3.2.2 Discriminative Model Training

By using a natural sample y and generated sample ŷ, we calculate the discriminator loss

L
(GAN)
D (y, ŷ) defined as the following cross-entropy function:

L
(GAN)
D (y, ŷ) = − 1

T

T∑
t=1

log
1

1 + exp (−D (yt))

− 1

T

T∑
t=1

log

(
1− 1

1 + exp (−D (ŷt))

)
.

(3.1)

θD is updated by using the stochastic gradient ∇θDL
(GAN)
D (y, ŷ). Figure 3.2 illustrates

the procedure for computing the discriminator loss.

3.2.3 Generative Model Training

After updating the discriminator, we calculate the adversarial loss of the generator

L
(GAN)
ADV (ŷ) which deceives the discriminator as follows:

L
(GAN)
ADV (ŷ) = − 1

T

T∑
t=1

log
1

1 + exp (−D (ŷt))
. (3.2)

A set of the model parameters of the generator θG is updated by using the stochastic gra-

dient ∇θGL
(GAN)
ADV (ŷ). Goodfellow et al. [44] showed this adversarial framework minimizes

the approximated Jensen–Shannon (JS) divergence between two distributions of natural

and generated samples.
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Fig. 3.2: Loss function and gradients for updating the discriminator. Param. Gen. indi-

cates MLPG [1]. Note that, the model parameters of the acoustic models are not updated

in this step.

3.3 Acoustic Model Training Using GANs

3.3.1 Acoustic Model Training Criteria Incorporating GANs

Here, we describe a novel training algorithm for SPSS which incorporates the GAN. As

for the proposed algorithm, acoustic models are trained to deceive the discriminator that

distinguishes natural and generated speech parameters.

The loss function of the acoustic model training is defined as the following:

LG (y, ŷ) = LMGE (y, ŷ) + ωD
ELMGE

ELADV

L
(GAN)
ADV (ŷ) , (3.3)

where L
(GAN)
ADV (ŷ) makes the discriminator recognize the generated speech parameters

as natural, and minimizes the divergence between the distributions of the natural and

generated speech parameters. Therefore, the proposed loss function not only minimizes the

generation error but also makes the distribution of the generated speech parameters close

to that of natural speech. ELMGE
and ELADV

denote the expectation values of LMGE(y, ŷ)

and L
(GAN)
ADV (ŷ), respectively. Their ratio ELMGE

/ELADV
is the scale normalization term

between the two loss functions, and the hyper-parameter ωD controls the weight of the

second term. When ωD = 0, the loss function is equivalent to the conventional MGE

training described in Section 2.2.2, and when ωD = 1, the two loss functions have equal

weights. A set of the model parameters of the acoustic models θG is updated by using
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Fig. 3.3: Loss functions and gradients for updating acoustic models in the proposed

method. Note that the model parameters of the discriminator are not updated in this

step.

the stochastic gradient ∇θGLG(ŷ). Figure 3.3 illustrates the procedure for computing

the proposed loss function. In our algorithm, the acoustic models and discriminator are

iteratively optimized, as shown in Algorithm 3.1. When one module is being updated, the

model parameters of the another are fixed; that is, although the discriminator is included

in the forward path to calculate L
(GAN)
ADV (ŷ) in LG(y, ŷ), θD is not updated by the BP

algorithm for the acoustic models.

3.3.2 Integrating Anti-spoofing Techniques

The discriminator used in our method can be regarded as a DNN-based anti-spoofing

(voice spoofing detection) [45, 46] that distinguishes natural and synthetic speech. From

this perspective, a feature function ϕ(·) can be inserted between speech parameter pre-

diction and the discriminator as shown in Figs. 3.2 and 3.3. The function calculates more

distinguishable features in anti-spoofing than the direct use of speech parameters them-

selves. Namely, instead of y and ŷ in Eqs. (3.1) and (3.2), ϕ(y) and ϕ(ŷ) are used. In

training the acoustic models, the gradient ∂ϕ(ŷ)/∂ŷ is used for the BP algorithm.

As the features that are effective in anti-spoofing, this thesis uses dynamic features

of the spectral parameters, which are more effective to detect synthetic speech than the
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Algorithm 3.1 Iterative optimization for acoustic models and discriminator

1: η := learning rate

2: for number of training iterations do

3: for all training data (x,y) do

4: generate ŷ from the acoustic models:

ŷ = G(x; θG).

5: update θD while fixing θG:

θD ← θD − η∇θDL
(GAN)
D (y, ŷ).

6: update θG while fixing θD:

θG ← θG − η∇θGLG(y, ŷ).

7: end for

8: end for

directly use of static features [47]. The feature function is defined as ϕ(ŷ) = Mŷ, and

the gradient M⊤ is used for the BP algorithm.

Besides the dynamic features, we can use many features to be incorporated into the

proposed training. Because the vocoder systems are based on a minimum-phase vocal

tract model, the differences between the phase spectra between natural and synthetic

speech can be utilized for the discrimination [48]. Based on the difficulty in reliable

prosody modelling, features related to the F0 statistics are also effective to detect spoof-

ing attacks [49, 50]. To capture long-term dependencies of speech parameters, temporal

magnitude/phase modulation features were proposed in [51].

3.3.3 Duration Model Training Considering Isochrony

Our algorithm is simply applied to the spectral parameters and continuous F0 generation.

Here, we extend our algorithm to duration generation in TTS. For duration generation,

although we can directly apply our algorithm to phoneme duration, it is not guaranteed

that naturally-distributed phoneme duration has natural isochrony of the target language

(e.g., moras in Japanese) [52]. Therefore, we modify our algorithm so that the generated

duration naturally distributes in the language-dependent isochrony level. Figure 3.4 shows

the architecture. In the case of Japanese, which has mora isochrony, each mora duration

is calculated from the corresponding phoneme durations. The discriminator minimizes

the cross-entropy function by using the isochrony-level duration, while the generator min-

imizes the weighted sum of the MSE between natural and generated phoneme durations

and the adversarial loss using the isochrony-level durations. Since the calculation of the

isochrony-level duration is represented as the matrix multiplication shown in Fig. 3.5, the
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Fig. 3.5: Matrix representation to calculate isochrony-level duration. This is an example

in the case of a syllable-timed language such as Chinese.

BP algorithm is done using the transpose of the transformation matrix.

3.3.4 Various Divergences Miminized by GANs

The GAN framework works as a divergence minimization between natural and generated

speech parameters. As described in Section 3.2, the original GAN [44] minimizes the
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approximated JS divergence. From the perspective of the divergence minimization, we

further introduce additional GANs minimizing other divergences: f -GAN [53], Wasser-

stein GAN (W-GAN) [54], and least squares GAN (LS-GAN) [55]. The divergence of the

f -GAN is strongly related to speech processing such as a nonnegative matrix factoriza-

tion [56, 57], and the effectiveness of the W-GAN and LS-GAN in the image processing is

known. The discriminator loss L
(∗-GAN)
D (y, ŷ) and adversarial loss L

(∗-GAN)
ADV (ŷ) introduced

below can be used instead of Eqs. (3.1) and (3.2), respectively.

f -GAN

The f -GAN [53] is the unified framework that encompasses the original GAN. The

difference between distributions of natural and generated data is defined as the

f -divergence [58], which is a large class of different divergences including the Kullback–

Leibler (KL) and JS divergence. The f -divergence Df (y∥ŷ) is defined as follows:

Df (y∥ŷ) =
∫

q (ŷ) f

(
p (y)

q (ŷ)

)
dy, (3.4)

where p(·) and q(·) are absolutely continuous density functions of y and ŷ, respectively.

f(·) is a convex function satisfying f(1) = 0. Although various choices of f(·) for recovering
popular divergences are available, we adopt ones related to speech processing.

KL-GAN: Defining f(r) = r log r gives the KL divergence as follows:

DKL (y∥ŷ) =
∫

p (y) log
p (y)

q (ŷ)
dy. (3.5)

The discriminator loss L
(KL-GAN)
D (y, ŷ) is defined as follows:

L
(KL-GAN)
D (y, ŷ) = − 1

T

T∑
t=1

D (yt)

+
1

T

T∑
t=1

exp (D (ŷt)− 1) ,

(3.6)

while the adversarial loss L
(KL-GAN)
ADV (ŷ) is defined as follows:

L
(KL-GAN)
ADV (ŷ) = − 1

T

T∑
t=1

D (ŷt) . (3.7)

Reversed KL (RKL)-GAN: Since the KL divergence is not symmetric, the reversed

version, called reversed KL (RKL) divergence DRKL(y∥ŷ) differs from DKL(y∥ŷ), which
is defined as follows:

DRKL (y∥ŷ) =
∫

q (ŷ) log
q (ŷ)

p (y)
dy = DKL (ŷ∥y) . (3.8)
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Defining f(r) = − log r gives the discriminator loss L
(RKL-GAN)
D (y, ŷ) as follows:

L
(RKL-GAN)
D (y, ŷ) =

1

T

T∑
t=1

exp (−D (yt))

+
1

T

T∑
t=1

(−1 +D (ŷt)) ,

(3.9)

while the adversarial loss L
(RKL-GAN)
ADV (ŷ) is defined as follows:

L
(RKL-GAN)
ADV (ŷ) =

1

T

T∑
t=1

exp (−D (ŷt)) . (3.10)

JS-GAN: The JS divergence without approximation can be formed within the f -GAN

framework. Defining f(r) = −(r + 1) log r+1
2 + r log r gives the JS divergence as follows:

DJS (y∥ŷ) =
1

2

∫
p (y) log

2p (y)

p (y) + q (ŷ)
dy

+
1

2

∫
q (ŷ) log

2q (ŷ)

p (y) + q (ŷ)
dy.

(3.11)

the discriminator loss L
(JS-GAN)
D (y, ŷ) is defined as follows:

L
(JS-GAN)
D (y, ŷ) = − 1

T

T∑
t=1

log
2

1 + exp (−D (yt))

− 1

T

T∑
t=1

log

(
2− 2

1 + exp (−D (ŷt))

)
,

(3.12)

while the adversarial loss L
(JS-GAN)
ADV (ŷ) is defined as follows:

L
(JS-GAN)
ADV (ŷ) = − 1

T

T∑
t=1

log
2

1 + exp (−D (ŷt))
. (3.13)

Note that, the approximated JS divergence minimized by the original GAN is 2DJS(y∥ŷ)−
log(4) [44].

Wasserstein GAN (W-GAN)

To stabilize the extremely unstable training of the original GAN, Arjovsky et al. [54]

proposed the W-GAN, which minimizes the Earth-Mover’s distance (Wasserstein-1). The

Earth-Mover’s distance is defined as follows:

DEM (y, ŷ) = inf
γ

E(y,ŷ)∼γ [∥y − ŷ∥] , (3.14)

where γ(y, ŷ) is the joint distribution whose marginals are respectively the distributions

of y and ŷ. On the basis of the Kantorovich–Rubinstein duality [59], the discriminator
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loss L
(W-GAN)
D (y, ŷ) is defined as follows:

L
(W-GAN)
D (y, ŷ) = − 1

T

T∑
t=1

D (yt) +
1

T

T∑
t=1

D (ŷt) , (3.15)

while the adversarial loss L
(W-GAN)
ADV (ŷ) is defined as follows:

L
(W-GAN)
ADV (ŷ) = − 1

T

T∑
t=1

D (ŷt) . (3.16)

We assume the discriminator to be the K-Lipschitz function. Namely, after updating the

discriminator, we clamp its weight parameters to a fixed interval such as [−0.01, 0.01].

Least Squares GAN (LS-GAN)

To avoid the gradient vanishing problem of the original GAN using the sigmoid cross

entropy, Mao et al. [55] proposed the LS-GAN, which formulates the objective function

minimizing the mean squared error. The discriminator loss L
(LS-GAN)
D (y, ŷ) is defined as

follows:

L
(LS-GAN)
D (y, ŷ) =

1

2T

T∑
t=1

(D (yt)− b)
2

+
1

2T

T∑
t=1

(D (ŷt)− a)
2
,

(3.17)

while the adversarial loss L
(LS-GAN)
ADV (ŷ) is defined as follows:

L
(LS-GAN)
ADV (ŷ) =

1

2T

T∑
t=1

(D (ŷt)− c)
2
, (3.18)

where a, b, and c denote the labels that make the discriminator recognize the generated

data as generated, the natural data as natural, and the generated data as natural. When

they satisfy the conditions b − c = 1 and b − a = 2, the divergence to be minimized is

the Pearson X 2 divergence between p(y) + q(ŷ) and 2q(ŷ). Because we found that these

conditions degrade quality of synthetic speech, we used alternative conditions suggested

in Eq. (9) of [55], i.e., a = 0, b = 1, and c = 1.

3.3.5 Discussions

The proposed loss function (Eq. (3.3)) is the combination of a multi-task learning algo-

rithm using discriminators [60] and GANs. In defining LG(y, ŷ) = L
(GAN)
ADV (ŷ), the loss

function is equivalent to that for the GAN. Comparing with the GANs, our method is

a fully supervised setting, i.e., we utilize the referred input and output parameters [61]

without a latent variable. Also, since only the BP algorithm is used for training, a variety

of DNN architectures such as long short-term memory (LSTM) [62] can be used as the

acoustic models and discriminator.



Chapter 3 Statistical Parametric Speech Synthesis Using Generative Adversarial Networks 27

Table 3.1: Statistics of natural (“Natural”) and generated (“MGE” and “Proposed”)

continuous F0

Mean Variance

Natural 4.8784 0.076853

MGE 4.8388 0.032841

Proposed (ωD = 1.0) 4.8410 0.032968

Using the designed feature function ϕ(·), we can choose not only analytically derived

features (e.g., GV and MS) but also automatically derived features (e.g., auto-encoded

features [63]). Note that, using the features that effectively detect synthetic speech for

the proposed training algorithm does not necessarily improve synthetic speech quality,

that is, the differences in these features do not always relate to the human perception in

speech.

As described above, our algorithm makes the distribution of the generated speech pa-

rameters close to that of the natural speech. Since we perform generative adversarial

training with DNNs, our algorithm comes to have a more complicated probability distribu-

tion than the conventional Gaussian distribution. Figure 3.6 plots natural and generated

speech parameters with several mel-cepstral coefficient pairs. Whereas the parameters

of the conventional algorithm are narrowly distributed, those of the proposed algorithm

are as widely distributed as the natural speech. Moreover, we can see that the proposed

algorithm has a greater effect on the distribution of the higher order of the mel-cepstral

coefficients.

Here, one can explore which components (e.g., analytically derived features and intu-

itive reasons [64]) the algorithm changes. Figure 3.7 plots the averaged GVs of natural

and generated speech parameters. We can see that the GV generated by the proposed

algorithm is closer to the natural GV than that of the one produced by the conventional

algorithm. This is quite natural result because compensating distribution differences is

related to minimizing moments differences [65, 66]. Then, we calculated a maximal in-

formation coefficient (MIC) [67] to quantify a nonlinear correlation among the speech

parameters. The results are shown in Fig. 3.8. As reported in [68], we can see that

there are weak correlations among the natural speech parameters, whereas strong correla-

tions are observed among those of the generated speech parameters of the MGE training.

Moreover, the generated mel-cepstral coefficients of our algorithm have weaker correla-

tions than those of the MGE training. These results suggest that the proposed algorithm

compensates not only the GV of the generated speech parameters but also the correlation

among the parameters. Also, the statistics of continuous F0, phoneme duration, and mora

duration are listed in Tables 3.1, 3.2, and 3.3, respectively. The bold values are the closest

to natural statistics in the results. In Tables 3.2 and 3.3, “Proposed (phoneme)” and
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Fig. 3.6: Scatter plots of mel-cepstral coefficients with several pairs of dimensions. From

the left, the figures correspond to natural speech, the conventional MGE algorithm, and

the proposed algorithm (ωD = 1.0). These mel-cepstral coefficients were extracted from

one utterance of the evaluation data.

Table 3.2: Statistics of natural (“Natural”) and generated (“MSE” and “Proposed(*)”)

phoneme duration

Mean Variance

Natural 16.314 126.20

MSE 14.967 47.665

Proposed (phoneme, ωD = 1.0) 14.963 75.471

Proposed (mora, ωD = 1.0) 15.074 73.207
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Fig. 3.8: MICs of natural and generated mel-cepstral coefficients. The MIC ranges from

0.0 to 1.0, and the two variables with a strong correlation have a value closer to 1.0. From

the left, the figures correspond to natural speech, the conventional MGE algorithm, and

the proposed algorithm (ωD = 1.0). These MICs were calculated from one utterance of

the evaluation data.

“Proposed (mora)” indicate that the proposed methods applied to phoneme and mora

duration, respectively. We can see that the proposed method also makes the statistics

closer to those of the natural speech than the conventional method. In the results con-

cerning duration generations, “Proposed (mora),” tends to reduce the difference in the

mean rather than in the variance.
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Table 3.3: Statistics of natural (“Natural”) and generated (“MSE” and “Proposed(*)”)

mora duration

Mean Variance

Natural 25.141 131.93

MSE 23.492 60.891

Proposed (phoneme, ωD = 1.0) 24.794 96.828

Proposed (mora, ωD = 1.0) 24.978 96.682

Our algorithm for spectrum and F0, proposed in Section 3.3.1, compensates the joint

distribution of them. Therefore, we can perform the distribution compensation consid-

ering correlations [69] between different features. Also, compensating dimensionality dif-

ferences [70] can be applied for deceiving the discriminator. Since the time resolutions in

phoneme duration and mora duration are different, our algorithm considering isochrony

is related to multi-resolution GAN [71] and hierarchical duration modeling [72].

Regarding related work, Kaneko et al. [73] proposed a generative adversarial network-

based post-filter for TTS. The post-filtering process has high portability because it is

independent of original speech synthesis procedures, but it comes at a high computation

cost and has a heavy disk footprint in synthesis. In contrast, our algorithm can directly

utilize original synthesis procedures [74]. Also, we expect that our algorithm can be

extended to waveform synthesis [75, 19].

3.4 Experimental Evaluations for TTS

3.4.1 Conditions for TTS Evaluation

We used speech data of a male speaker taken from the ATR Japanese speech database [76].

The speaker uttered 503 phonetically balanced sentences. We used 450 sentences (sub-

sets A to I) for the training and 53 sentences (subset J) for the evaluation. Speech

signals were sampled at a rate of 16 kHz, and the shift length was set to 5 ms. The

0th-through-24th mel-cepstral coefficients were used as spectral parameters and F0 and 5

band-aperiodicity [21, 77] were used as excitation parameters. The STRAIGHT analysis-

synthesis system [24] was used for the parameter extraction and the waveform synthesis.

To improve training accuracy, speech parameter trajectory smoothing [78] with a 50 Hz

cutoff modulation frequency was applied to the spectral parameters in the training data.

In the training phase, spectral features were normalized to have zero-mean unit-variance,

and 80% of the silent frames were removed from the training data in order to increase

training accuracy.

The DNN architectures are listed in Table 3.4. For the hidden layers, ReLU [35] was
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Table 3.4: Architectures of DNNs used in TTS evaluations. Feed-Forward networks were

used for all architectures

Spectral

parameter

generation

(through Sections

3.4.2 and 3.4.4)

Spectral and F0

parameter

generation

(Section 3.4.5)

Duration

generation

(Section 3.4.6)

Acoustic models 274–3 × 400–75 442–3 × 512–94 442–3 × 512–94

Discriminator 25–2 × 200–1 26–3 × 256–1 1–3 × 256–1

Duration models N/A 439–3 × 256–1 439–3 × 256–1

adopted to the activation function. The linear function was used for the output activation

function of the acoustic models and duration models. The sigmoid function was used for

the output activation function of the discriminator. In the spectral parameter genera-

tion (Section 3.4.2 through 3.4.4), the acoustic models predicted static-dynamic feature

sequence of the mel-cepstral coefficients (75-dim.) from the 274-dimensional linguistic

features frame by frame, and the discriminator used frame-wise static mel-cepstral coeffi-

cients (25-dim.). Here, since F0, band-aperiodicity, and duration of natural speech were

directly used for the speech waveform synthesis, we only used some of the prosody-related

features such as the accent type. In the spectral parameter and F0 generation (Section

3.4.5), the acoustic models predicted static-dynamic feature sequence of the mel-cepstral

coefficients, continuous log F0 [23], and band-aperiodicity with U/V (94-dim.) from the

442-dimensional linguistic features frame by frame, and the discriminator used the joint

vector of the frame-wise static mel-cepstral coefficients and continuous log F0 (26-dim.).

In the duration generation (Section 3-4-6), we constructed duration models that generate

phoneme duration from corresponding linguistic features (439-dim). The acoustic models

were trained using MGE training.

In the training phase, we ran the training algorithm based on minimizing the MSE

(Eq. (2.3)) [31] frame-by-frame for the initialization of acoustic models and then we ran the

conventional MGE training [39] with 25 iterations. Here, “iteration” means using all the

training data (450 utterances) once for training. The discriminator was initialized using

natural speech and synthetic speech after the MGE training. The number of iterations

for the discriminator initialization was 5. The proposed training and discriminator re-

training were performed with 25 iterations. The expectation values ELMGE
and ELADV

were estimated at each iteration step.
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3.4.2 Objective Evaluation of Spectral Parameter Generation

In order to evaluate our algorithm, we calculated the parameter generation loss defined in

Eq. (2.4) and the spoofing rate of the synthetic speech. The spoofing rate is the number

of spoofing synthetic speech parameters divided by the total number of synthetic speech

parameters in the evaluation data. Here, “spoofing synthetic speech parameter” indi-

cates a parameter for which the discriminator recognized the synthetic speech as natural.

The discriminator for calculating the spoofing rates was constructed using natural speech

parameters and generated speech parameters of the conventional MGE training. The

generation loss and spoofing rates were first calculated with various hyper-parameter ωD

settings.

Figure 3.9 shows the results for the generation loss and spoofing rate. As ωD increases

from 0.0, the generation loss monotonically increases, but from 0.4, we cannot see any

tendency. On the other hand, the spoofing rate significantly increases as ωD increases

from 0.0 to 0.2; from 0.2, the value does not vary much. These results demonstrate

that the proposed training algorithm makes the generation loss worse but can train the

acoustic models to deceive the discriminator; in other words, although our method does

not necessarily decrease the generation error, it tries to reduce the difference between the

distributions of natural and generated speech parameters by taking the adversarial loss

into account during the training.

3.4.3 Investigation of Convergence

To investigate the convergence of the proposed training algorithm, we ran the algorithm

through 100 iterations. Figure 3.10 plots the generation loss and adversarial loss for the

training and evaluation data. We can see that both loss values are almost monotonically

decreased in training. Although the values of evaluation data strongly vary after a few

iterations, they can converge after several more iterations.

3.4.4 Subjective Evaluation of Spectral Parameter Generation

Preference AB tests were conducted to evaluate the quality of speech produced by the

algorithm. We generated speech samples with three methods:

MGE: conventional MGE (= Proposed (ωD = 0.0))

Proposed (ωD = 0.3): spoofing rate > 0.99

Proposed (ωD = 1.0): standard setting

Every pair of synthetic speech samples generated by using each method was presented to

listeners in random order. Listeners participated in the assessment by using our crowd-

sourced subjective evaluation systems.

The results are shown in Fig. 3.11. In Figs. 3.11(a) and (b), the proposed algorithm out-
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Fig. 3.9: Parameter generation loss (above) and spoofing rate (below) for various ωD for

spectral parameter generation in TTS.

performs conventional MGE training algorithm in both hyper-parameter settings. There-

fore, we can conclude that our algorithm robustly yields significant improvement in terms

of speech quality regardless its hyper-parameter setting. Henceforth, we set the hyper-

parameter to 1.0 for the following evaluations because Fig. 3.11(c) shows that the score

of “Proposed (ωD = 1.0)” was slightly better than that of “Proposed (ωD = 0.3).”
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Fig. 3.10: Parameter generation loss (above) and adversarial loss (below) for the training

data (blue-dashed line) and evaluation data (red line).

3.4.5 Subjective Evaluation of F0 Generation

We evaluated the effect of the proposed algorithm for F0 generation. We conducted a

subjective evaluation using the following three methods:

MGE: conventional MGE

Proposed (sp): proposed algorithm applied only to spectral parameters
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(c) Proposed (ωD=0.3) vs. Proposed (ωD=1.0)

Fig. 3.11: Preference scores of speech quality with 95% confidence intervals (spectral

parameter generation in TTS). From the top, the numbers of listeners were 22, 24, and

22, respectively.

Proposed (sp+F0): proposed algorithm applied to spectral and F0 parameters

Every pair of synthetic speech samples generated by using each method was presented to

listeners in random order. Since Fig. 3.11 has already demonstrated that the proposed

algorithm improves synthetic speech quality in terms of generating spectral parameters, we

did not compare “Proposed (sp)” with “MGE.” Listeners participated in the assessment

by using our crowdsourced subjective evaluation systems.

Figure 3.12 shows the results. Since the score of “Proposed (sp+F0)” is much higher

than those of “Proposed (sp)” and “MGE,” we can confirm the effectiveness of the pro-

posed algorithm for not only spectral parameters but also F0.

3.4.6 Subjective Evaluation of Duration Generation

We evaluated the effect of the proposed algorithm for duration generation. We conducted

a subjective evaluation using the following three methods:

MSE: conventional MSE
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Fig. 3.12: Preference scores of speech quality with 95% confidence intervals (spectral

parameter and F0 generation in TTS). From the top, the numbers of the listeners were

19 and 28, respectively.

Proposed (phoneme): proposed algorithm applied to phoneme duration

Proposed (mora): proposed algorithm applied to mora duration

Preference AB tests were conducted in the same manner as in the previous evaluation.

The results are shown in Fig. 3.13. There are no significant differences in the resulting

scores. To investigate the reason, we constructed an discriminator that distinguishes

conventional MSE and natural speech, and calculated the classification accuracy. We

expect that our algorithm works better when the conventional generated parameters are

much distinguished from the natural ones. As shown in Fig. 3.14, the accuracy of the

discriminator that uses durations is lower than that of the discriminator that uses spectral

parameters and F0. This result infers that distribution compensation by our algorithm

does not work well in duration generation. Henceforth, we did not apply the proposed

algorithm for generating durations.

3.4.7 Comparison to Global Variance Compensation

Figure 3.7 demonstrated that our method compensates the GV of the generated speech

parameters. In addition, we investigate whether or not our method improves speech

quality more than explicit GV compensation. We applied the post-filtering process [41]

to the spectral and F0 parameters generated by the MGE training. A preference AB test

with 29 listeners was conducted by using our crowd-sourced subjective evaluation systems.

Figure 3.15 shows the results. Since the score of “Proposed” is higher than that of the

conventional GV post-filter (“MGE-GV”), we can conclude that our method produces
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Fig. 3.13: Preference scores of speech quality with 95% confidence intervals (duration

generation in TTS). From the top, the numbers of the listeners were 19, 20, and 21,

respectively.
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Fig. 3.14: Accuracy of discriminator. “sp+F0”, “phoneme”, and “mora” denote using the

spectral parameters and F0, phoneme durations, and mora durations for discriminating

the natural and synthetic speech, respectively.

more gain in speech quality than the conventional GV compensation.
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Fig. 3.15: Preference scores of speech quality with 95% confidence intervals (compared to

the GV compensation).
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Fig. 3.16: Preference scores of speech quality with 95% confidence intervals (effect of the

feature function which is used in anti-spoofing).

3.4.8 Effect of Feature Function

We investigate whether the feature function used in anti-spoofing is effective to our

method. We adopted the following two functions:

Identity: ϕ(y) = y

Static & delta [47]: ϕ(y) = My

“Identity” is equivalent to not using the feature function. When “Static & delta” is

adopted, joint vectors of the static, delta, and delta-delta mel-cepstral coefficients and

continuous F0 are input to the discriminator. A preference AB test with 31 listeners was

conducted by using our crowd-sourced subjective evaluation systems.

Figure 3.16 shows the results. Clearly, the score of “Static & delta” is much lower than

that of “Identity.” From this result, although “Static & delta” effectively distinguishes

natural and synthetic speech, it does not improve speech quality.

3.4.9 Subjective Evaluation Using Complicated DNN Architecture

Only simple Feed-Forward networks were used in the above-described evaluations. Ac-

cordingly, we confirm whether our method can improve speech quality even when more
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Fig. 3.17: Preference scores of speech quality with 95% confidence intervals (comparison

in using LSTMs).

complicated networks are used. We used two-layer uni-directional LSTMs [62] as both

acoustic models and discriminator. The numbers of memory cells in the acoustic models

and discriminator were 256 and 128, respectively. Our method was applied to spectral

and F0 parameters. MGE (“MGE”) and the proposed (“Proposed”) training algorithms

were compared. A preference AB test with 19 listeners was conducted by using our

crowd-sourced subjective evaluation systems.

Figure 3.17 shows the results. Since the score of “Proposed” is higher than that of

“MGE,” we can demonstrate that our method works for not only simple architectures but

also complicated ones.

3.4.10 Effect of Divergence to Be Minimized by GANs

As the final investigation regarding TTS, we compared speech qualities of various GANs.

We adopted the following GANs:

GAN: Eqs. (3.1) and (3.2)

KL-GAN: Eqs. (3.6) and (3.7)

RKL-GAN: Eqs. (3.9) and (3.10)

JS-GAN: Eqs. (3.12) and (3.13)

W-GAN: Eqs. (3.15) and (3.16)

LS-GAN: Eqs. (3.17) and (3.18)

We conducted a MOS test on speech quality. The synthetic speech generated by using

each GAN was presented to listeners in random order. 55 listeners participated in the

assessment by using our crowdsourced subjective evaluation systems.

Figure 3.18 shows the results. We can see that our method works in the case of all

divergences except “KL-GAN” and “JS-GAN.” Two points are noteworthy: 1) minimiz-

ing KL-divergence (KL-GAN) did not improve synthetic speech quality, but the reversed

version (RKL-GAN) worked, and 2) JS-divergence did not work well, but the approxi-

mated version (GAN) worked. The best GAN in terms of synthetic speech quality was the

W-GAN, whose MOS score was significantly higher than those of the LS-GAN, JS-GAN,
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Fig. 3.18: MOS scores of speech quality with 95% confidence intervals (comparison in

divergences of GANs).

and KL-GAN.

3.5 Experimental Evaluations for VC

3.5.1 Conditions for VC Evaluation

The experimental conditions such as the dataset used in the evaluation, speech parameters,

pre-processing of data, and training procedure were the same as the previous evaluations

except for the dimensionality of spectral parameters and DNN architectures. The ef-

fectiveness of the proposed algorithm was investigated in 1) VC using speech parameter

conversion, and 2) VC using spectral differentials.

In evaluation using speech parameter conversion, DNNs for male-to-male conversion

and male-to-female conversion were constructed. Feed-Forward DNNs were adopted to

the acoustc models and discriminator. The hidden layers of the acoustic models and

discriminator had 3 × 512 units and 3 × 256 units, respectively. The 1st-through-59th

mel-cepstral coefficients were converted. The input 0th mel-cepstral coefficients were

directly used as those of the converted speech. F0 was linearly transformed, and band-

aperiodicity was not transformed. The DTW algorithm was used to align total frame

lengths of the input and output speech parameters.

In evaluation using spectral differentials, DNNs for male-to-male conversion were con-

structed. Here, instead of Feed-Forward DNNs, input-to-output highway networks [79]

(described in Appendix A) were adopted to acoustic models. The transform gate of the
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Fig. 3.19: Preference scores of speech quality with 95% confidence intervals (DNN-based

VC using speech parameter conversion).

highway networks only had a 59-unit input and 59-unit sigmoid output layers.

We generated speech samples with the conventional MGE training and the proposed

training algorithms. We conducted preference AB tests to evaluate the converted speech

quality. We presented every pair of converted speech of the two sets in random order and

had listeners select the speech sample that sounded better in quality. Similarly, XAB tests

on the speaker individuality were conducted using the natural speech as a reference “X.”

3.5.2 Subjective Evaluation Using Speech Parameter Conversion

In the subjective evaluations, eight listeners participated in assessment of male-to-male

conversion case, and 27 listeners participated in assessment of male-to-female conversion

case using our crowdsourced subjective evaluation systems. The results of the preference

tests on speech quality and speaker individuality are shown in Figs. 3.19 and 3.20, respec-

tively. We can find that our algorithm achieves better scores in speech quality the same

as the TTS evaluations. Moreover, we can see that the proposed algorithm also improves

speaker individuality. We expect that the improvements are caused by compensating

GVs of the generated speech parameters which affect speaker individuality [11]. These

improvements were observed not only in the inter-gender but also cross-gender cases.

3.5.3 Subjective Evaluation Using Spectral Differentials

Eight listeners participated in the evaluations. The results of the preference tests on

speech quality and speaker individuality are shown in Fig. 3.21 and 3.22, respectively.
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Fig. 3.20: Preference scores of speaker individuality with 95% confidence intervals (DNN-

based VC using speech parameter conversion).

0.0 0.2 0.4 0.6 0.8 1.0
Preference score

Proposed 

MGE 

Fig. 3.21: Preference scores of speech quality with 95% confidence intervals (DNN-based

VC using spectral differentials).

The results demonstrate that the proposed algorithm also effective in VC using spectral

differentials, although the improvements of the scores decreased compared to those shown

in Figs. 3.19 and 3.20.

3.6 Summary

This chapter proposed a novel training algorithm for DNN-based high-quality SPSS. The

algorithm incorporates a framework of GANs, which adversarily trains generator networks

and discriminator networks. In the case of proposed algorithm, acoustic models of speech

synthesis are trained to deceive the discriminator that distinguishes natural and synthetic

speech. Since the GAN framework minimizes the difference in distributions of natural

and generated data, the acoustic models are trained to not only minimize the generation

loss but also make the parameter distribution of the generated speech parameters close to
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Fig. 3.22: Preference scores of speaker individuality with 95% confidence intervals (DNN-

based VC using spectral differentials).

that of natural speech. It was found that the proposed algorithm compensated not only

global variance but also correlation among generated speech parameters. Experimental

evaluations were conducted in both DNN-based TTS and VC. The results demonstrated

that the proposed algorithm yielded significant improvements in terms of speech quality in

both TTS and VC regardless of its hyper-parameter settings. The results also showed that

the proposed algorithm incorporating the Wasserstein GAN improved synthetic speech

quality the most in comparison with various GANs.
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Chapter 4

Vocoder-free Statistical Parametric

Speech Synthesis Using GANs

4.1 Introduction

This chapter extends the algorithm proposed in Chapter 3 to vocoder-free SPSS using

STFT spectra. In modeing STFT spectra, we must deal with the difficulty due to the

high dimensionality of the features. Moreover, since the STFT spectra include both of

the spectral parameters and excitation parameters as described in Section 2.2.1, their

distribution is more complicated than that of the conventional vocoder-derived speech

parameters. To overcome these difficulties, this chapter proposes low- and multi-resolution

GAN-based training algorithms. In the proposed algorithm that uses the low-resolution

GANs, acoustic models are trained to minimize the weighted sum of the mean squared

error between natural and generated spectra in the original resolution and adversarial

loss to deceive a discriminator in the lower resolution. Since the low-resolution spectra

are close to filter banks and their distribution becomes simpler, we can expect that the

GAN-based distribution compensation works well. Furthermore, this chapter proposes an

algorithm using multi-resolution GANs, which uses both the low-resolution GANs and

original-resolution GANs.

This chapter is organized as follows. Section 4.2 describes the proposed algorithms

using low- and multi-resolution GANs. Section 4.3 presents experimental evaluations of

the proposed algorithms in DNN-based TTS using STFT spectra. Section 4.4 summarizes

this chapter.

4.2 Acoustic Model Training Using Low-/Multi-resolution GANs

4.2.1 Acoustic Model Training Criteria Using Low-resolution GANs

The algorithm described in Section 3.2 can be applied to STFT spectra generation. How-

ever, it suffers from a higher dimensionality and complex distribution of the spectral
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amplitudes. We introduce a low-resolution discriminator D(L)(·), which distinguishes

natural and generated STFT spectra in the low-frequency resolution. Let ϕ(·) be an

average-pooling function that converts the spectral amplitudes in the original-frequency

resolution y into those in the low-frequency resolution, y(L) = [y⊤
1 , · · · ,y⊤

t , · · · ,y⊤
T ]

⊤.

The d-th frequency bin of the low-resolution spectra at frame t, y
(L)
t (d), is calculated as

y
(L)
t (d) =

1

w

−p+(d−1)s+w∑
i=−p+(d−1)s

yt (i) , (4.1)

where p, w, and s denote the size of zero-padding, width of pooling window, and stride of

pooling, respectively. The term yt(i) takes 0 if i < 0 or i > Dy. Here, Dy is equal to the

total number of frequency bins in the original-frequency resolution. The total number of

frequency bins in the low-frequency resolution D
(L)
y is given as

D(L)
y =

Dy + 2p− w

s
+ 1. (4.2)

The above processes are similar to conversion from a raw STFT spectra into the filter-bank

parameters that represent spectral envelopes of speech. The loss function for training the

acoustic models is defined as follows:

L
(Low)
G (y, ŷ) = LMSE (y, ŷ) + ω

(L)
D

Eŷ [LMSE]

Eŷ(L) [LADV]
L
(GAN)
ADV

(
ŷ(L)

)
, (4.3)

where ŷ(L) = ϕ(ŷ), and ω
(L)
D is a hyperparameter to control the effect of the second

term. This loss function can be regarded as the weighted sum of the MSE in the original

resolution and adversarial loss in the lower resolution. Since the distributions of y(L)

and ŷ(L) are simpler than those of y and ŷ, we can overcome the difficulties in the

training due to the high dimensionality and complex distribution. Also, we can expect

the low-resolution GAN to dramatically improve the synthetic speech quality because it

can capture the difference between spectral envelopes of natural and synthetic speech,

which are dominant features in terms of speech quality. The low-resolution discriminator

are trained in the same manner as in Eq. (3.1), but y and ŷ are replaced with y(L) and

ŷ(L), respectively.

4.2.2 Acoustic Model Training Criteria Using Multi-resolution GANs

The proposed algorithm that uses the low-resolution GAN described in Section 4.2.1 can

be extended to use multi-resolution GANs, which introduces not only the low-resolution

discriminator D(L)(·) but also original-resolution discriminator D(·). The loss function

for training the acoustic models is defined as follows:

L
(Multi)
G (y, ŷ) = LMSE (y, ŷ) + ωD

Eŷ [LMSE]

Eŷ [LADV]
L
(GAN)
ADV (ŷ)

+ ω
(L)
D

Eŷ [LMSE]

Eŷ(L) [LADV]
L
(GAN)
ADV

(
ŷ(L)

)
.

(4.4)
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Fig. 4.1: Loss functions for updating acoustic models in proposed algorithm using multi-

resolution GANs. ϕ(·) is an average-pooling function to convert STFT spectral amplitudes

into low-resolution spectra.

When ωD = 0, this loss function is the same as that in Eq. (4.3). Figure 4.1 illustrates

the computation procedure of the loss function. Note that the discriminators are trained

separately.

4.2.3 Discussions

Kaneko et al. [80] proposed a GAN-based post-filter for STFT spectra. As explained in

Section 3.3.5, this post-filter-based approach requires additional computation in synthesis,

but our algorithms do not. Also, because the previous work splits the STFT spectra into

several sub-frequency bands and applies GANs to each band independently, it ignores the

overall spectral structures (i.e., spectral envelope) and their correlation. On the other

hand, our algorithms can effectively capture them.

The average pooling function used in the proposed algorithm with the low-resolution

GANs can be regarded as the feature function described in Section 3.3.2. By changing

the setting of the pooling, we can also compensate for the difference between natural and

synthetic speech in the domain of mel-filter banks [47].

By shifting our proposed method from SPSS using vocoders (described in Chapter 3)

to vocoder-free SPSS using STFT spectra (described in this chapter), we expect that it
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will become easier to extend the algorithm, e.g., waveform-level GANs, in the future.

4.3 Experimental Evaluations

4.3.1 Experimental Conditions

We used speech data of a Japanese female speaker who uttered 4007 sentences (some of

the JSUT corpus [81]). The number of utterances included in training and evaluation

data were 3808 and 199, respectively. Speech signals were sampled at a rate of 16 kHz.

The frame length, shift length, and FFT length were set to 400 (25 ms), 80 (5 ms),

and 1024 samples, respectively. We used the hamming window for FFT analysis. In the

training phase, linguistic features which have a real value, and log spectral amplitudes

were normalized to have zero-mean unit-variance. We removed 90% of the silence frames

from the training data to improve training accuracy.

The DNN architectures for acoustic models and discriminator were Feed-Forward. The

input of the acoustic models were 444-dimensional vectors including 439-dimensional lin-

guistic features, 3-dimensional duration features, continuous log F0, and U/V. The F0 was

extracted from speech data by using STRAIGHT vocoder systems [24]. We constructed

DNNs, which predicted duration and F0 features from linguistic features, in advance. The

architecture for the acoustic models included 3 × 1024-unit ReLU [35] hidden layers and

a 513-unit linear output layer. The architecture for the discriminator in the original reso-

lution included 3 × 512-unit ReLU hidden layers and one unit sigmoid output layer. The

architectures for the discriminator in the lower resolution were almost same as that in the

original resolution; that is, the activation functions used in the hidden and output layers

were ReLU and sigmoid, the number of hidden layers was 3, but the number of input and

hidden units varied in accordance with the parameters of the pooling function ϕ(·). In

the following experiments, we fixed p = 6 and s = w/2 in Eq. (4.2). w was set to 14,

30, and 70. Accordingly, the number of input units D
(L)
y was set to 74, 34, 14, and the

number of hidden units was set to 128, 64, 32, respectively.

In the training phase, we initialized the acoustic models by minimizing the MSE (de-

scribed in Section 2.4.2) with 25 iterations. “Iteration” means using all the training data

(3808 utterances) once for training. The discriminators in the original and lower reso-

lution were initialized using natural speech and generated spectra after the initialization

of the acoustic models. The number of iterations for the initialization was 5. The pro-

posed training algorithms were used with 25 iterations. The expectation values for scaling

the loss functions were estimated at each iteration step. We used AdaGrad [82] as the

optimization algorithm, setting the learning rate to 0.01.

We conducted subjective evaluations on the quality of the synthetic speech with various

hyperparameter settings. Preference AB tests were conducted to evaluate the quality of

speech produced from several algorithms. 25 listeners participated in each of the following

evaluations by using our crowd-sourced evaluation systems, and each listener evaluated 10
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Table 4.1: Preference scores of speech quality with their p-values (original-resolution

GANs)

Score p-value

Baseline 0.700 vs. 0.300 < 10−10 ωD = 0.5

ωD = 1.0 0.280 vs. 0.720 < 10−10 Baseline

ωD = 0.5 0.496 vs. 0.504 8.6× 10−1 ωD = 1.0

samples. The total number of listeners was 375. In the following evaluations, “Baseline”

denotes the method that trains the acoustic models using conventional MSE loss [18], i.e.,

both hyperparameters, ωD and ω
(L)
D in Eq. (4.4), were set to 0.

4.3.2 Subjective Evaluation of Original-resolution GANs

First, to investigate the effect of GAN-based training in the original resolution (i.e., the

same as the algorithm described in the previous chapter), we fixed ω
(L)
D = 0, and set

ωD = 0.5 or 1.0. We compared the quality of “Baseline” and our proposed algorithm

using original-resolution GANs with “ωD = 0.5,” and “ωD = 1.0.” Table 4.1 shows the ex-

perimental results. Compared with “Baseline,” the methods using the original-resolution

GANs significantly degraded synthetic speech quality regardless of the hyperparameter

settings. Therefore, we can confirm that simply applying the GAN-based training algo-

rithm, which is effective in conventional SPSS using vocoders [83], does not improve STFT

spectra generation.

4.3.3 Subjective Evaluation of Low-resolution GANs

Next, to investigate effect of w, we fixed ωD = 0 and set ω
(L)
D = 1. We compared the quality

of generated speech samples using “Baseline” and our algorithm using the low-resolution

GANs win “w = 14,” “w = 30,” and “w = 70.” Table 4.2 shows the experimental results.

From the results shown in Table 4.2(a), we can see that the proposed algorithm using

the low-resolution GANs always achieved better scores than “Baseline,” regardless of its

parameter settings of the pooling function, which demonstrates the effectiveness of this

algorithm. We set w to 30 in the following evaluation because Table 4.2(b) shows that

“w = 30” was the best, although there were no significant differences among the scores.

We also investigated the effect of the hyperparameter in the low-resolution GANs.

We fixed ωD = 0 and set ω
(L)
D = 0.5 or 1.0. We compared the quality of generated

speech using “Baseline” and our algorithm using the low-resolution GANs with “ω
(L)
D =

0.5,” and “ω
(L)
D = 1.0.” Table 4.3 shows the experimental results. From the results,

we can conclude that the proposed algorithm using the low-resolution GANs successfully

improved synthetic speech quality regardless of its hyperparameter settings.
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Table 4.2: Preference scores of speech quality with their p-values (low-resolution GANs

with various pooling-parameter settings)

(a) Results of comparing “Baseline” with using low-resolution

GANs

Score p-value

w = 14 0.568 vs. 0.432 2.3× 10−3 Baseline

w = 30 0.572 vs. 0.428 1.2× 10−3 Baseline

w = 70 0.528 vs. 0.472 2.1× 10−1 Baseline

(b) Results of proposed algorithm using low-resolution GANs

Score p-value

w = 14 0.488 vs. 0.512 5.9× 10−1 w = 30

w = 30 0.532 vs. 0.468 1.5× 10−1 w = 70

w = 70 0.472 vs. 0.528 2.1× 10−1 w = 14

Table 4.3: Preference scores of speech quality with their p-values (low-resolution GANs

with various hyperparameter settings)

Score p-value

Baseline 0.456 vs. 0.544 4.9× 10−2 ω
(L)
D = 0.5

ω
(L)
D = 1.0 0.588 vs. 0.412 7.6× 10−5 Baseline

ω
(L)
D = 0.5 0.504 vs. 0.496 8.6× 10−1 ω

(L)
D = 1.0

4.3.4 Subjective Evaluation of Multi-resolution GANs

Finally, we examined the effects of the proposed algorithm using the multi-resolution

GANs. We generated speech samples using the following algorithms:

Original: (ωD, ω
(L)
D ) = (1.0, 0.0)

Low: (ωD, ω
(L)
D ) = (0.0, 1.0)

Multi: (ωD, ω
(L)
D ) = (1.0, 1.0)

Table 4.4 shows the results, Obviously, the proposed algorithm using the low-resolution

GANs achieved a much higher score than the others. To investigate this reason, we plotted

the STFT spectral magnitudes of synthetic speech used for the evaluations illustrated in

Fig. 4.2. We can see that high randomness observed in natural spectra (Fig. 4.2(a)) was

excessively smoothed in synthetic speech of “Baseline” (Fig. 4.2(b)), while the proposed

three algorithms reproduced the randomness by using GANs, However, there were some

temporal discontinuities in the spectra generated by using original- and multi-resolution
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Table 4.4: Preference scores of speech quality with their p-values (multi-resolution GANs)

Score p-value

Low 0.808 vs. 0.192 < 10−10 Multi

Multi 0.492 vs. 0.508 7.2× 10−1 Original

Original 0.192 vs. 0.808 < 10−10 Low

GANs (Figs. 4.2(d) and (e)), which might considerably degrade the synthetic speech

quality. One can address the quality degradation by using recurrent architectures such as

long-short term memory [33, 62] for the acoustic models and discriminator to make them

capture the temporal dependency of the STFT spectra. Further improvements also can

be achieved by conditioning the GANs with the specific information of the utterance such

as the phonetic contents, and U/V [84].

4.4 Summary

This chapter proposed two training algorithms to incorporate GANs into vocoder-free

SPSS using STFT spectra. In the proposed algorithm using a low-resolution GANs,

acoustic models are trained to minimize the MSE between natural and generated STFT

spectral amplitudes at the original resolution and the distribution differences of their dis-

tributions at low resolution. This algorithm can be extended to one using multi-resolution

GANs, which also minimizes the distribution differences of natural and generated STFT

spectra at the original resolution. Experimental results indicated that the algorithm us-

ing the original-resolution GANs and our proposed algorithm using multi-resolution GANs

degraded synthetic speech quality, but the proposed algorithm using the low-resolution

GANs successfully improved it.
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Fig. 4.2: STFT spectral magnitudes of natural and synthetic speech.
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Chapter 5

Conclusion

5.1 Thesis Summary

The advantage of SPSS is the flexibility to control the characteristics of the synthetic

speech. However, several factors degrade speech quality. The primary one is over-

smoothing of the generated speech parameters due to acoustic modeling. Another is

vocoder-derived speech parameterization, which can be avoided by using vocoder-free

SPSS, such as TTS using STFT spectra. This thesis addressed these factors by introduc-

ing GANs into the acoustic model training of SPSS.

In Chapter 2, we reviewed conventional SPSS using DNNs. First, the basic framework

of SPSS using vocoder-derived speech parameters was described. GV compensation, a

conventional method for alleviating the over-smoothing effect, was also described. A

method that goes beyond SPSS using vocoder systems was also described: TTS using

STFT spectra. Feed-Forward DNN and LSTM, which are often used as acoustic models,

were described. The loss functions mainly used for acoustic model training were explained.

In Chapter 3, a novel training algorithm incorporating GANs was proposed. Acous-

tic models are trained to minimize the weighted sum of the conventional MGE loss and

adversarial loss, which makes the discriminator recognize generated speech parameters

as natural. Because this GAN-like training criterion reduces the distribution difference

between natural and generated speech parameters, the proposed algorithm can reproduce

not only GVs but also correlations among generated speech parameters. Moreover, the

discriminator in the proposed algorithm can be regarded as anti-spoofing using DNNs.

Thus, techniques for anti-spoofing can be incorporated into the proposed algorithm. Ex-

perimental evaluations of the proposed algorithm were conducted for DNN-based TTS

and VC. The TTS evaluation showed that the proposed algorithm improved synthetic

speech quality regardless of the hyperparameter settings used to control the weights for

the adversarial loss. The results of an investigation focused on the divergences minimized

by the GAN demonstrated that the W-GAN, which minimizes the Earth Mover’s distance,

was the best among various GANs at improving the quality of the synthetic speech. The

VC evaluation showed that the proposed algorithm outperformed the conventional MGE



Chapter 5 Conclusion 53

training algorithm in terms of both converted speech quality and speaker individuality.

In Chapter 4, the algorithm described in Chapter 3 was extended to vocoder-free SPSS

using STFT spectra. To address the difficulty in acoustic model training due to the

complex distribution of STFT spectral amplitudes, training algorithms using low- and

multi-resolution GANs were presented. Use of the one using low-resolution GANs reduced

the difference in spectral envelopes of the natural and generated STFT spectra. This can

be extended to the algorithm using multi-resolution GANs, which uses low- and original-

resolution discriminators for training acoustic models. Experimental results demonstrated

that the algorithm using low-resolution GANs improved synthetic speech quality and

worked robustly against its hyperparameter settings. Comparison of the original-, low-

, and multi-resolution GANs revealed that the low-resolution GANs were the best for

improving synthetic speech quality.

5.2 Future Work

Although we have improved synthetic speech quality of SPSS, several problems remain to

be solved.

5.2.1 Investigating or Devising Effective Techniques for Anti-spoofing

As described in Section 3.3.2, anti-spoofing techniques can be integrated into the proposed

algorithm. However, the use of the dynamic features of the spectral parameters, which

is effective for detecting voice spoofing attacks, did not improve synthetic speech quality,

as shown in Fig. 3.16. One possible solution is to use anti-spoofing techniques related to

human perception in speech.

5.2.2 Further Improving Synthetic Speech Quality using STFT Spectra

The proposed algorithm using low-resolution GANs improved synthetic speech quality.

Further improvements can be made by developing methods for effectively using the

original-resolution discriminator. Introduction of conditional GANs into the proposed

algorithm should make the discriminator capture more of the fine structures of natural

STFT spectral amplitudes.
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A

Voice Conversion Using

Input-to-Output Highway Networks

A.1 Introduction

In constructing acoustic models for VC, we can utilize not only techniques to alleviate the

over-smoothing effect of converted speech parameters, but also input speech information

since the input and output parameters are often in the same domain (e.g., cepstrum). This

appendix proposes DNN-based VC using input-to-output highway networks. Although the

typical DNN-based VC directly estimates a converted spectral parameter sequence, our

architecture estimates it as the sum of input spectral parameters and weighted spectral

differentials estimated through DNNs. The use of input speech parameters effectively

alleviates the over-smoothing effect, and the weights of the spectral differentials effectively

represent the characteristics of the spectral parameters.

A.2 Proposed architecture

A.2.1 Input-to-Output Highway networks for Voice Conversion

Highway networks [85, 86] are weighted skip-connections between layers, and they often

connect hidden layers. Given that the input and output are often in the same domain

(e.g., cepstrum) in VC, we propose a VC using highway networks connected from the

input to output as follows:

ŷ = x+ T (x) ◦G (x) , (A.1)

where ◦ is the Hadamard product. T (·) is the transform gate of highway networks de-

scribed as Feed-Forward neural networks. Each value of T (x) ranges from 0.0 to 1.0, and

they represent time- and feature-varying weights of G(x). When T (x) = 0, input speech

parameters are directly used as converted speech parameters, and when T (x) = 1, the

architecture is equivalent to residual networks [87]. Therefore, the input speech param-

eters are strongly transformed by G(·) when the value of the transform gate becomes



A Voice Conversion Using Input-to-Output Highway Networks 66

...

...
...

...

...
... Acoustic

models

Transform
gate

Fig. A.1: Voice conversion using input-to-output highway networks.

close to 1.0. Fig. A.1 shows the proposed architecture. The loss function for training is

equal to the MGE loss shown in Eq. (2.4), and all model parameters of T (·) and G(·) are
simultaneously estimated to minimize the loss function.

A.2.2 Discussions

Since our architecture utilizes both input speech parameters and spectral differentials

weighted by the transform gate, it efficiently alleviates over-smoothing of the converted

speech parameters. Fig. A.2 shows scatter plots of the speech parameters. This figure

plots pairs of mel-cepstral coefficients whose corresponding value of the transform gate is

large (i.e., it is close to residual networks) or small (i.e., it is close to direct use of input

speech parameters). We can see that our architecture alleviates distribution shrinkage

better than Feed-forward neural networks in both cases.

The variation in spectral parameters between speakers strongly depends on not only

the speaker pair but also the frequency band and phonetic environments. For instance,

formant structures change more in the inter-gender case than in the intra-gender case,

but the inter-speaker variation is small in the lower frequency bands within the same

gender. On the other hand, inter-phoneme variation (intra-speaker variation) is large in

the lower frequency bands [88]. Therefore, golden VC should avoid over-transformation

(e.g., frequency warping [89]) when the input feature is close to the output feature and

should apply a flexible transformation when the input is far from the output feature. The

transform gates in Fig. A.1 can be interpreted as the variation and characteristics of the

spectral parameters. Fig. A.3 shows examples of activation of the transform gates using

mel-filter banks. This figure shows thatG(·) greatly transforms the spectral parameters in
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Fig. A.2: Scatter plots of speech parameters. µT denotes the value of the transform gate

averaged over one utterance.

the high frequency band, since they strongly represent the characteristics of the speaker.

Meanwhile, in male-to-male speaker conversion (Fig. A.3(a)), G(·) does not transform the

spectral parameters in the low frequency band as much as in the case of male-to-female

speaker conversion (Fig. A.3(b)).

From another perspective, our architecture can be regarded as soft selection of features.

The dimensionalities of the speech features (e.g., the numbers of mel-cepstral coefficients)

are hyper-parameters for VC. For instance, the use of only the lower order of the mel-

cepstrum makes the training robust while it degrades speech quality. On the other hand,

the use of the rich orders improves speech quality but suffers from the randomness of the

higher order of the mel-cepstrum. The former case corresponds to T (x) = 1 for the lower

order and T (x) = 0 for the higher order. The latter case corresponds to T (x) = 1 for

all orders. Whereas such a hard selection is often used, our architecture can utilize soft

selection; i.e., each activation of T (x) varies from 0.0 to 1.0 depending on x. Fig. A.4

shows examples of activation of the transform gates using mel-cepstral coefficients. We can

see that the lower orders of the mel-cepstral coefficients, which are dominant in speaker

conversion, tend to be strongly transformed by G(·). On the other hand, the higher orders

of the mel-cepstral coefficients tend to be not completetely ignored, but weakly converted.
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Fig. A.3: Examples of activation of transform gates using mel-filter banks.

Finally, the transform gate of our architecture is similar to adaptive soft-masking fil-

tering [90] in speech enhancement. Hence, it is expected that knowledge can be shared

between voice conversion and speech enhancement.

A.3 Experimental Evaluation

A.3.1 Experimental Conditions

We used speech data of two male speakers and one female speaker taken from the ATR

Japanese speech database [76]. The speakers uttered 503 phonetically balanced sentences.

We used 450 sentences (subsets A to I) for training and 53 sentences (subset J) for evalua-

tion. Speech signals were sampled at a rate of 16 kHz, and the shift length was set to 5 ms.

The 0th-through-59th mel-cepstral coefficients were used as the spectral parameter and

F0 and 5 band-aperiodicity [21, 77] were used as excitation parameters. The STRAIGHT

analysis-synthesis system [24] was used for the parameter extraction and waveform syn-

thesis. The 0th mel-cepstral coefficients of the input speech were directly used as those of

the converted speech. To improve training accuracy, speech parameter trajectory smooth-

ing [78] with a 50 Hz cutoff modulation frequency was applied to the spectral parameters

in the training data. In the training phase, the spectral features were normalized to have

zero-mean unit-variance, and the MGE training [39] was performed. We built DNNs for

male-to-male and male-to-female conversion. The DNN architectures were Feed-Forward

networks. The architecture included 3 × 512-unit Rectified Linear Unit (ReLU) [35] hid-
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Fig. A.4: Examples of activation of transform gates using mel-cepstral coefficients.

den layers and a 118-unit linear output layer. The acoustic models output static and

dynamic mel-cepstral coefficients (118-dim.) frame by frame. The transform gate only

had a 59-unit input and 59-unit sigmoid output layers. We used AdaGrad [82] as the

optimization algorithm, setting the learning rate to 0.01. F0 was linearly transformed,

and band-aperiodicity was not transformed.

To evaluate our architecture, we conducted a subjective evaluation of the converted

speech quality and speaker individuality.

A.3.2 Subjective Evaluation

In the subjective evaluation, we compared the proposed architecture (input-to-output

highway) with the conventional one (Feed-Forward). A preference test (AB test) was

conducted to evaluate the speech quality. We presented every pair of converted speech of

the two architectures in random order, and we forced listeners to select speech samples that

sounded like they had better quality. Similarly, an XAB test on the speaker individuality

was conducted using natural speech as the reference, i.e., “X”. Thirty listeners participated

in each assessment of our crowd-sourced evaluation systems.

The results of the preference tests on speech quality and speaker individuality are shown

in Fig. A.5 and Fig. A.6, respectively. We found that our architecture scored higher in

both speech quality and speaker individuality than the conventional Feed-Forward neural

network-based VC. Therefore, we demonstrated the effectiveness of our architecture.
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Fig. A.5: Preference scores of speech quality of converted speech with 95% confidence

intervals (DNN-based VC using input-to-output highway networks).
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Fig. A.6: Preference scores of speaker individuality of converted speech with 95% confi-

dence intervals (DNN-based VC using input-to-output highway networks).


